IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2600-d1658200.html
   My bibliography  Save this article

Life Cycle Assessment of an Oscillating Water Column-Type Wave Energy Converter

Author

Listed:
  • Heshanka Singhapurage

    (Department of Process, Energy and Environmental Technology, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, 3918 Porsgrunn, Norway
    Department of Civil and Environmental Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama 10200, Sri Lanka)

  • Pabasari A. Koliyabandara

    (Department of Civil and Environmental Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama 10200, Sri Lanka)

  • Gamunu Samarakoon

    (Department of Process, Energy and Environmental Technology, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, 3918 Porsgrunn, Norway)

Abstract

Among different kinds of renewable energy sources, ocean wave energy offers a promising source of low-carbon electricity. However, despite this potential, ocean wave energy systems can have notable environmental impacts, which remain underexplored. Environmental life cycle assessment (LCA) is a method that can be used to evaluate the environmental impact of these systems. But few LCAs have been conducted for wave energy converters (WECs), and no prior studies specifically address onshore oscillating water column (OWC) devices, leaving a clear gap in this field. This research provides a cradle-to-gate LCA for an OWC device, using the 500 kW LIMPET OWC plant, located on the Isle of Islay in Scotland, as a case study. The assessment investigated the environmental impacts of the plant across 19 impact categories. OpenLCA 2.0 software was used for the analysis, with background data sourced from the Ecoinvent database version 3.8. The ReCiPe 2016 Midpoint (H) and Cumulative Energy Demand (CED) methods were used for the impact assessment. The results revealed a Global Warming Potential (GWP) of 56 kg CO 2 eq/kWh and a carbon payback period of 0.14 years. The energy payback period is significantly higher at 196 years, largely due to the plant’s inefficient energy capture and recurring operational failures reported. These findings highlight that although ocean wave energy is a renewable energy source, WEC’s efficiency and reliability are key factors for sustainable electricity generation. Furthermore, the findings conclude the need for selecting eco-friendly construction materials in OWC construction, namely chamber construction, and the advancement of energy-harnessing mechanisms, such as in Power Take-off (PTO) systems, to improve energy efficiency and reliability. Moreover, the importance of material recycling at the end-of-life stage, which was not accounted for in this cradle-to-gate analysis yet, is underscored for offsetting a portion of the associated environmental impacts. This research contributes novel insights into sustainable construction practices for OWC devices, offering valuable guidance for future wave energy converter designs.

Suggested Citation

  • Heshanka Singhapurage & Pabasari A. Koliyabandara & Gamunu Samarakoon, 2025. "Life Cycle Assessment of an Oscillating Water Column-Type Wave Energy Converter," Energies, MDPI, vol. 18(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2600-:d:1658200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2600/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aoun, N.S. & Harajli, H.A. & Queffeulou, P., 2013. "Preliminary appraisal of wave power prospects in Lebanon," Renewable Energy, Elsevier, vol. 53(C), pages 165-173.
    2. Pennock, Shona & Vanegas-Cantarero, María M. & Bloise-Thomaz, Tianna & Jeffrey, Henry & Dickson, Matthew J., 2022. "Life cycle assessment of a point-absorber wave energy array," Renewable Energy, Elsevier, vol. 190(C), pages 1078-1088.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    2. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    3. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Dagher, Leila & Harajli, Hassan, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 1. The case of the Lebanese residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1634-1642.
    5. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
    6. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    7. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    8. Xu, Xinxin & Robertson, Bryson & Buckham, Bradley, 2020. "A techno-economic approach to wave energy resource assessment and development site identification," Applied Energy, Elsevier, vol. 260(C).
    9. Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.
    10. Wang, Longze & Mao, Yuteng & Li, Zhehan & Yi, Xinxing & Ma, Yiyi & Zhang, Yan & Li, Meicheng, 2024. "Life cycle carbon emission intensity assessment for photovoltaic greenhouses: A case study of Beijing City, China," Renewable Energy, Elsevier, vol. 230(C).
    11. Harajli, Hassan & Gordon, Fabiana, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 2. The case of the Lebanese commercial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1643-1649.
    12. Kovaleva, Olga & Eelsalu, Maris & Soomere, Tarmo, 2017. "Hot-spots of large wave energy resources in relatively sheltered sections of the Baltic Sea coast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 424-437.
    13. Kasiulis, Egidijus & Punys, Petras & Kofoed, Jens Peter, 2015. "Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 134-142.
    14. Satymov, Rasul & Bogdanov, Dmitrii & Dadashi, Mojtaba & Lavidas, George & Breyer, Christian, 2024. "Techno-economic assessment of global and regional wave energy resource potentials and profiles in hourly resolution," Applied Energy, Elsevier, vol. 364(C).
    15. Yu, Mingqi & Cao, Feifei & Shi, Hongda & Wu, Hongjian & Ma, Xu & Wu, Weimin & Zhang, Xiantao, 2025. "Heave attitude self-sustaining vs. rocker-type wave energy converter: A comparative study using both experimental and numerical methods," Energy, Elsevier, vol. 322(C).
    16. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    18. Li Li & Jiadong Zhu & Guanqiong Ye & Xuehao Feng, 2018. "Development of Green Ports with the Consideration of Coastal Wave Energy," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    19. Liu, Renwen & He, Lipeng & Yang, Bowen & Li, Xiaotao & Zhang, Limin & Zhong, Feng, 2024. "A low-frequency piezoelectric wave energy harvester based on segmental beam and double magnetic excitation," Energy, Elsevier, vol. 302(C).
    20. Zodiatis, George & Galanis, George & Nikolaidis, Andreas & Kalogeri, Christina & Hayes, Dan & Georgiou, Georgios C. & Chu, Peter C. & Kallos, George, 2014. "Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study," Renewable Energy, Elsevier, vol. 69(C), pages 311-323.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2600-:d:1658200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.