IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2562-d1656342.html
   My bibliography  Save this article

The Impact of Climate Change on Economic Uncertainty in the Renovation of a Social Housing Building

Author

Listed:
  • Marco Manzan

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

  • Atlas Ramezani

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

  • Julia Jean Corona

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

Abstract

The renovation of buildings impacts various factors; one of them is the economic aspect, which has a significant influence on the decision-making process in building refurbishment, especially in social housing. An often-neglected aspect of renovation is the influence of climate change. Typically, historical climate data are used to estimate the building’s future energy needs. However, due to climate change, this approach may fail to accurately represent future environmental conditions, resulting in miscalculations in energy consumption and costs. This study analyzed a building archetype obtained from the TABULA webtool with the characteristics of a social house building located in Trieste. Dynamic simulations were performed using DesignBuilder and EnergyPlus software and future climate models (the GERICS_CNRM-CM5 and GERICS_IPSL-CM5A-MR models obtained from the EURO-CORDEX database). The projected energy needs of the renovated building and its economic effects were compared with current scenarios, and due to the uncertainties in economic parameters, the outcome is expressed in terms of percentiles of the Net Present Value (NPV). The results of this study show that since temperature increases in the future, the need for energy in the heating period reduces, while the need for cooling increases, directly affecting the statistical distribution of the NPV.

Suggested Citation

  • Marco Manzan & Atlas Ramezani & Julia Jean Corona, 2025. "The Impact of Climate Change on Economic Uncertainty in the Renovation of a Social Housing Building," Energies, MDPI, vol. 18(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2562-:d:1656342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ludovica Maria Campagna & Francesco Fiorito, 2022. "On the Impact of Climate Change on Building Energy Consumptions: A Meta-Analysis," Energies, MDPI, vol. 15(1), pages 1-35, January.
    2. Marco Manzan & Giorgio Lupato & Amedeo Pezzi & Paolo Rosato & Alberto Clarich, 2020. "Reliability-Based Optimization for Energy Refurbishment of a Social Housing Building," Energies, MDPI, vol. 13(9), pages 1-18, May.
    3. Huang, Kuo-Tsang & Hwang, Ruey-Lung, 2016. "Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan," Applied Energy, Elsevier, vol. 184(C), pages 1230-1240.
    4. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.
    5. Dodoo, Ambrose & Gustavsson, Leif, 2016. "Energy use and overheating risk of Swedish multi-storey residential buildings under different climate scenarios," Energy, Elsevier, vol. 97(C), pages 534-548.
    6. Francesco Mancini & Gianluigi Lo Basso, 2020. "How Climate Change Affects the Building Energy Consumptions Due to Cooling, Heating, and Electricity Demands of Italian Residential Sector," Energies, MDPI, vol. 13(2), pages 1-24, January.
    7. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Zhuocheng & de Wilde, Pieter & Attia, Shady & Zuo, Jian, 2025. "Challenges in predicting the impact of climate change on thermal building performance through simulation: A systematic review," Applied Energy, Elsevier, vol. 382(C).
    2. Duan, Zhuocheng & Omrany, Hossein & Zuo, Jian, 2025. "Impact of climate change on energy performance and energy conservation measures effectiveness in Australian office buildings," Energy, Elsevier, vol. 319(C).
    3. Camilla Lops & Valentina D’Agostino & Samantha Di Loreto & Sergio Montelpare, 2025. "Towards Energy Efficiency in Existing Buildings: A Dynamic Simulation Framework for Analysing and Reducing Climate Change Impacts," Sustainability, MDPI, vol. 17(14), pages 1-25, July.
    4. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    5. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.
    6. Pulkkinen, Jari & Louis, Jean-Nicolas & Debusschere, Vincent & Pongrácz, Eva, 2024. "Near-, medium- and long-term impacts of climate change on the thermal energy consumption of buildings in Finland under RCP climate scenarios," Energy, Elsevier, vol. 302(C).
    7. Elzbieta Rynska & Joanna Klimowicz & Slawomir Kowal & Krzysztof Lyzwa & Michal Pierzchalski & Wojciech Rekosz, 2020. "Smart Energy Solutions as an Indispensable Multi-Criteria Input for a Coherent Urban Planning and Building Design Process—Two Case Studies for Smart Office Buildings in Warsaw Downtown Area," Energies, MDPI, vol. 13(15), pages 1-24, July.
    8. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    10. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    11. Jaewan Joe & Seunghyeon Min & Seunghwan Oh & Byungwoo Jung & Yu Min Kim & Deuk Woo Kim & Seung Eon Lee & Dong Hyuk Yi, 2022. "Development of Simplified Building Energy Prediction Model to Support Policymaking in South Korea—Case Study for Office Buildings," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    12. Albina Scioti & Mariella De Fino & Silvia Martiradonna & Fabio Fatiguso, 2022. "Construction Solutions and Materials to Optimize the Energy Performances of EPS-RC Precast Bearing Walls," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    13. Sánchez, M.N. & Soutullo, S. & Olmedo, R. & Bravo, D. & Castaño, S. & Jiménez, M.J., 2020. "An experimental methodology to assess the climate impact on the energy performance of buildings: A ten-year evaluation in temperate and cold desert areas," Applied Energy, Elsevier, vol. 264(C).
    14. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    15. Bai, Lujian & Wang, Shusheng, 2019. "Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China," Energy, Elsevier, vol. 170(C), pages 709-719.
    16. Amin Mohammadi & Mahmoud Reza Saghafi & Mansoureh Tahbaz & Farshad Nasrollahi, 2017. "Effects of Vernacular Climatic Strategies (VCS) on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City," Sustainability, MDPI, vol. 9(11), pages 1-26, October.
    17. Alexander Wenzel & Pablo Guindos & Manuel Carpio, 2025. "Using Timber in Mid-Rise and Tall Buildings to Construct Our Cities: A Science Mapping Study," Sustainability, MDPI, vol. 17(5), pages 1-30, February.
    18. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    19. Samuelson, Holly W. & Baniassadi, Amir & Gonzalez, Pablo Izaga, 2020. "Beyond energy savings: Investigating the co-benefits of heat resilient architecture," Energy, Elsevier, vol. 204(C).
    20. Nima Monghasemi & Amir Vadiee & Konstantinos Kyprianidis & Elaheh Jalilzadehazhari, 2023. "Rank-Based Assessment of Grid-Connected Rooftop Solar Panel Deployments Considering Scenarios for a Postponed Installation," Energies, MDPI, vol. 16(21), pages 1-16, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2562-:d:1656342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.