Optimizing Space Heating in Buildings: A Deep Learning Approach for Energy Efficiency
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hyejung Chung & Kyung-shik Shin, 2018. "Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
- Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
- Cui, Xuyang & Zhu, Junda & Jia, Lifu & Wang, Jiahui & Wu, Yusen, 2024. "A novel heat load prediction model of district heating system based on hybrid whale optimization algorithm (WOA) and CNN-LSTM with attention mechanism," Energy, Elsevier, vol. 312(C).
- Mauricio Nath Lopes & Roberto Lamberts, 2018. "Development of a Metamodel to Predict Cooling Energy Consumption of HVAC Systems in Office Buildings in Different Climates," Sustainability, MDPI, vol. 10(12), pages 1-25, December.
- Roozbeh Sadeghian Broujeny & Safa Ben Ayed & Mouadh Matalah, 2023. "Energy Consumption Forecasting in a University Office by Artificial Intelligence Techniques: An Analysis of the Exogenous Data Effect on the Modeling," Energies, MDPI, vol. 16(10), pages 1-21, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
- Dong, Shengming & Liu, Tong & Hu, Xiaowei & Zhang, Chen & Hu, Pengli & Zhuang, Wenhui & Liu, Qiyou, 2025. "Investigation on the long short-term memory-based models for rural heating load prediction in Northeast China," Energy, Elsevier, vol. 318(C).
- Zhou, Zhongbao & Gao, Meng & Liu, Qing & Xiao, Helu, 2020. "Forecasting stock price movements with multiple data sources: Evidence from stock market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Heon Baek, 2024. "A CNN-LSTM Stock Prediction Model Based on Genetic Algorithm Optimization," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(2), pages 205-220, June.
- Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
- Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Anagnostopoulos, Argyrios & Xenitopoulos, Theofilos & Ding, Yulong & Seferlis, Panos, 2024. "An integrated machine learning and metaheuristic approach for advanced packed bed latent heat storage system design and optimization," Energy, Elsevier, vol. 297(C).
- Ding, Yan & Lyu, Yacong & Lu, Shilei & Wang, Ran, 2022. "Load shifting potential assessment of building thermal storage performance for building design," Energy, Elsevier, vol. 243(C).
- Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Kumar S. Chandar & Hitesh Punjabi, 2021. "Cat Swarm Optimization Algorithm Tuned Multilayer Perceptron for Stock Price Prediction," International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), IGI Global Scientific Publishing, vol. 17(7), pages 1-15, November.
- Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).
- Se-Hak Chun & Jae-Won Jang, 2022. "A New Trend Pattern-Matching Method of Interactive Case-Based Reasoning for Stock Price Predictions," Sustainability, MDPI, vol. 14(3), pages 1-15, January.
- Jaime Alberto Gómez Vilchis & Federico Hernández Álvarez & Luis Ignacio Román de la Sancha, 2021. "Autómata Evolutivo (AE) para el mercado accionario usando Martingalas y un Algoritmo Genético," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(4), pages 1-22, Octubre -.
- Mohan, Ritwik & Pachauri, Nikhil, 2025. "An ensemble model for the energy consumption prediction of residential buildings," Energy, Elsevier, vol. 314(C).
- Domenico Palladino & Iole Nardi & Cinzia Buratti, 2020. "Artificial Neural Network for the Thermal Comfort Index Prediction: Development of a New Simplified Algorithm," Energies, MDPI, vol. 13(17), pages 1-27, September.
- You-Da Jhong & Chang-Shian Chen & Bing-Chen Jhong & Cheng-Han Tsai & Song-Yue Yang, 2024. "Optimization of LSTM Parameters for Flash Flood Forecasting Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(3), pages 1141-1164, February.
- Teddy Lazebnik & Tzach Fleischer & Amit Yaniv-Rosenfeld, 2023. "Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks," Sustainability, MDPI, vol. 15(14), pages 1-9, July.
- Hou, D. & Evins, R., 2024. "A protocol for developing and evaluating neural network-based surrogate models and its application to building energy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Xian, Huafeng & Che, Jinxing, 2022. "Multi-space collaboration framework based optimal model selection for power load forecasting," Applied Energy, Elsevier, vol. 314(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2471-:d:1653613. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.