Optimizing Space Heating in Buildings: A Deep Learning Approach for Energy Efficiency
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hyejung Chung & Kyung-shik Shin, 2018. "Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
- Cui, Xuyang & Zhu, Junda & Jia, Lifu & Wang, Jiahui & Wu, Yusen, 2024. "A novel heat load prediction model of district heating system based on hybrid whale optimization algorithm (WOA) and CNN-LSTM with attention mechanism," Energy, Elsevier, vol. 312(C).
- Mauricio Nath Lopes & Roberto Lamberts, 2018. "Development of a Metamodel to Predict Cooling Energy Consumption of HVAC Systems in Office Buildings in Different Climates," Sustainability, MDPI, vol. 10(12), pages 1-25, December.
- Roozbeh Sadeghian Broujeny & Safa Ben Ayed & Mouadh Matalah, 2023. "Energy Consumption Forecasting in a University Office by Artificial Intelligence Techniques: An Analysis of the Exogenous Data Effect on the Modeling," Energies, MDPI, vol. 16(10), pages 1-21, May.
- Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dong, Shengming & Liu, Tong & Hu, Xiaowei & Zhang, Chen & Hu, Pengli & Zhuang, Wenhui & Liu, Qiyou, 2025. "Investigation on the long short-term memory-based models for rural heating load prediction in Northeast China," Energy, Elsevier, vol. 318(C).
- Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
- Amir Shahcheraghian & Adrian Ilinca, 2024. "Advanced Machine Learning Techniques for Energy Consumption Analysis and Optimization at UBC Campus: Correlations with Meteorological Variables," Energies, MDPI, vol. 17(18), pages 1-22, September.
- Chao Liu & Fengfeng Gao & Mengwan Zhang & Yuanrui Li & Cun Qian, 2024. "Reference Vector-Based Multiobjective Clustering Ensemble Approach for Time Series Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 181-210, July.
- Zhou, Zhongbao & Gao, Meng & Liu, Qing & Xiao, Helu, 2020. "Forecasting stock price movements with multiple data sources: Evidence from stock market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
- Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
- Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Heon Baek, 2024. "A CNN-LSTM Stock Prediction Model Based on Genetic Algorithm Optimization," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(2), pages 205-220, June.
- Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
- Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Sui, Yunren & Wu, Wei, 2023. "Ionic liquid screening and performance optimization of transcritical carbon dioxide absorption heat pump enhanced by expander," Energy, Elsevier, vol. 263(PA).
- Anagnostopoulos, Argyrios & Xenitopoulos, Theofilos & Ding, Yulong & Seferlis, Panos, 2024. "An integrated machine learning and metaheuristic approach for advanced packed bed latent heat storage system design and optimization," Energy, Elsevier, vol. 297(C).
- Jiawen Ye & Xulai Meng & Haiying Wang & Qingdao Zhou & Siwei An & Tong An & Pooria Ghorbani Bam & Diego Rosso, 2025. "ARIMA-Based Forecasting of Wastewater Flow Across Short to Long Time Horizons," Mathematics, MDPI, vol. 13(13), pages 1-24, June.
- Hafize Nurgul Durmus Senyapar & Bilal Duzgun & Fatih Emre Boran, 2024. "Energy Labels and Consumer Attitudes: A Study among University Staff," Sustainability, MDPI, vol. 16(5), pages 1-30, February.
- Ding, Yan & Lyu, Yacong & Lu, Shilei & Wang, Ran, 2022. "Load shifting potential assessment of building thermal storage performance for building design," Energy, Elsevier, vol. 243(C).
- Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Hamzah Ali Alkhazaleh & Navid Nahi & Mohammad Hossein Hashemian & Zohreh Nazem & Wameed Deyah Shamsi & Moncef L. Nehdi, 2022. "Prediction of Thermal Energy Demand Using Fuzzy-Based Models Synthesized with Metaheuristic Algorithms," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
- Jangsten, Maria & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2022. "District cooling substation design and control to achieve high return temperatures," Energy, Elsevier, vol. 251(C).
- Yan Cao & Towhid Pourrostam & Yousef Zandi & Nebojša Denić & Bogdan Ćirković & Alireza Sadighi Agdas & Abdellatif Selmi & Vuk Vujović & Kittisak Jermsittiparsert & Momir Milic, 2021. "RETRACTED ARTICLE: Analyzing the energy performance of buildings by neuro-fuzzy logic based on different factors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17349-17373, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2471-:d:1653613. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.