IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2423-d1651800.html
   My bibliography  Save this article

Comprehensive Control Strategy for Hybrid Energy Storage System Participating in Grid Primary Frequency Regulation

Author

Listed:
  • Haorui Jiang

    (Shandong Engineering Research Center for High-Efficiency Energy Storage and Hydrogen Energy Utilization, Shandong University, Jinan 250061, China)

  • Kuihua Han

    (Shandong Engineering Research Center for High-Efficiency Energy Storage and Hydrogen Energy Utilization, Shandong University, Jinan 250061, China)

  • Weiyu Bao

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Yahui Li

    (Shandong Engineering Research Center for High-Efficiency Energy Storage and Hydrogen Energy Utilization, Shandong University, Jinan 250061, China)

Abstract

The increasing integration of renewable energy sources has posed significant challenges to grid frequency stability. To maximize the advantages of energy storage in primary frequency regulation, this paper proposes a comprehensive control strategy for a hybrid energy storage system (HESS) based on supercapacitor battery. Firstly, considering the characteristics of the HESS and different control strategies, the battery responds to virtual droop control to reduce frequency deviation, while the supercapacitor responds to inertia control to suppress frequency drops and facilitate frequency recovery. Simultaneously, a reasonable dynamic dead zone is configured to prevent frequent actions of the battery and thermal unit while allowing flexible adjustments according to the load condition. Thirdly, an algebraic S-curve-based adaptive droop coefficient incorporating SOC is proposed, while the inertia coefficient additionally considers load type, enhancing adaptability. Furthermore, to better maintain the battery’s SOC, an improved adaptive recovery strategy within the battery dead zone is proposed, considering both SOC recovery requirements and system frequency deviation constraints. Finally, a simulation validation was conducted in MATLAB/Simulink. Compared to the conventional strategy, the proposed control strategy reduces the frequency drop rate by 17.43% under step disturbance. Under compound disturbances, the RMS of frequency deviation decreases by 13.34%, and the RMS of battery SOC decreases by 68.61%. The economic benefit of this strategy is 3.212 times that of the single energy storage scheme. The results indicate that the proposed strategy effectively alleviates sudden frequency disturbances, suppresses frequency fluctuations, and reduces battery output while maintaining the SOC of both the supercapacitor and the battery, thereby extending the battery lifespan and improving economic performance.

Suggested Citation

  • Haorui Jiang & Kuihua Han & Weiyu Bao & Yahui Li, 2025. "Comprehensive Control Strategy for Hybrid Energy Storage System Participating in Grid Primary Frequency Regulation," Energies, MDPI, vol. 18(10), pages 1-31, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2423-:d:1651800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dan Zhou & Zhiwei Zou & Yangqing Dan & Chenxuan Wang & Chenyuan Teng & Yuanlong Zhu, 2025. "An Integrated Strategy for Hybrid Energy Storage Systems to Stabilize the Frequency of the Power Grid Through Primary Frequency Regulation," Energies, MDPI, vol. 18(2), pages 1-25, January.
    2. Laiqing Yan & Tao Shui & Tailin Xue & Miao Wang & Ning Ma & Kaiyue Li, 2022. "Comprehensive Control Strategy Considering Hybrid Energy Storage for Primary Frequency Modulation," Energies, MDPI, vol. 15(11), pages 1-16, June.
    3. Minhan Yoon & Jaehyeong Lee & Sungyoon Song & Yeontae Yoo & Gilsoo Jang & Seungmin Jung & Sungchul Hwang, 2019. "Utilization of Energy Storage System for Frequency Regulation in Large-Scale Transmission System," Energies, MDPI, vol. 12(20), pages 1-13, October.
    4. Wei Chen & Na Sun & Zhicheng Ma & Wenfei Liu & Haiying Dong, 2023. "A Two-Layer Optimization Strategy for Battery Energy Storage Systems to Achieve Primary Frequency Regulation of Power Grid," Energies, MDPI, vol. 16(6), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Jie & Zhou, Mengxiong & Guo, Renwei & Tang, Jiankang & Su, Jiaoyue & Huang, Hui & Sun, Na & Nazir, Muhammad Shahzad & Wang, Yaodong, 2023. "A electric power optimal scheduling study of hybrid energy storage system integrated load prediction technology considering ageing mechanism," Renewable Energy, Elsevier, vol. 215(C).
    2. Chong Shao & Chao Tu & Jiao Yu & Mingdian Wang & Cheng Wang & Haiying Dong, 2024. "Optimal Power Model Predictive Control for Electrochemical Energy Storage Power Station," Energies, MDPI, vol. 17(14), pages 1-18, July.
    3. Lateef Onaadepo Ibrahim & Youl-Moon Sung & Doosoo Hyun & Minhan Yoon, 2020. "A Feasibility Study of Frequency Regulation Energy Storage System Installation in a Power Plant," Energies, MDPI, vol. 13(20), pages 1-13, October.
    4. Umar Fitra Ramadhan & Jaewan Suh & Sungchul Hwang & Jaehyeong Lee & Minhan Yoon, 2022. "A Comprehensive Study of HVDC Link with Reserve Operation Control in a Multi-Infeed Direct Current Power System," Sustainability, MDPI, vol. 14(10), pages 1-27, May.
    5. Muhammad Usman Aslam & Nusrat Subah Binte Shakhawat & Rakibuzzaman Shah & Nima Amjady & Md Sazal Miah & B. M. Ruhul Amin, 2024. "Hybrid Energy Storage Modeling and Control for Power System Operation Studies: A Survey," Energies, MDPI, vol. 17(23), pages 1-42, November.
    6. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    7. Qiang Zhang & Qi Jia & Tingqi Zhang & Hui Zeng & Chao Wang & Wansong Liu & Hanlin Li & Yihui Song, 2025. "An Artificial Intelligence Frequency Regulation Strategy for Renewable Energy Grids Based on Hybrid Energy Storage," Energies, MDPI, vol. 18(10), pages 1-23, May.
    8. Jin-Yong Jung & Yoon-Sung Cho & Jae-Hyun Min & Hwachang Song, 2022. "An Operation Strategy of ESS for Enhancing the Frequency Stability of the Inverter-Based Jeju Grid," Energies, MDPI, vol. 15(9), pages 1-24, April.
    9. Hyung-Seung Kim & Junho Hong & In-Sun Choi, 2021. "Implementation of Distributed Autonomous Control Based Battery Energy Storage System for Frequency Regulation," Energies, MDPI, vol. 14(9), pages 1-19, May.
    10. Laiqing Yan & Tao Shui & Tailin Xue & Miao Wang & Ning Ma & Kaiyue Li, 2022. "Comprehensive Control Strategy Considering Hybrid Energy Storage for Primary Frequency Modulation," Energies, MDPI, vol. 15(11), pages 1-16, June.
    11. Gianni Celli & Fabrizio Pilo & Giuditta Pisano & Simona Ruggeri & Gian Giuseppe Soma, 2021. "Relieving Tensions on Battery Energy Sources Utilization among TSO, DSO, and Service Providers with Multi-Objective Optimization," Energies, MDPI, vol. 14(1), pages 1-22, January.
    12. Lateef Onaadepo Ibrahim & In-Young Chung & Juyoung Youn & Jae Woong Shim & Youl-Moon Sung & Minhan Yoon & Jaewan Suh, 2022. "Coordinated Frequency Control of an Energy Storage System with a Generator for Frequency Regulation in a Power Plant," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    13. Dan Zhou & Zhiwei Zou & Yangqing Dan & Chenxuan Wang & Chenyuan Teng & Yuanlong Zhu, 2025. "An Integrated Strategy for Hybrid Energy Storage Systems to Stabilize the Frequency of the Power Grid Through Primary Frequency Regulation," Energies, MDPI, vol. 18(2), pages 1-25, January.
    14. Andrés Felipe Buitrago-Velandia & Oscar Danilo Montoya & Walter Gil-González, 2021. "Dynamic Reactive Power Compensation in Power Systems through the Optimal Siting and Sizing of Photovoltaic Sources," Resources, MDPI, vol. 10(5), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2423-:d:1651800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.