IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2412-d1651463.html
   My bibliography  Save this article

A Simple Thermoelectrical Surface Approach for Numerically Studying Dry Band Formation on Polluted Insulators

Author

Listed:
  • Marc-Alain Andoh

    (UQAC/CENGIVRE International Research Center on Atmospheric Icing and Electrical Network Engineering, University of Quebec at Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada)

  • Christophe Volat

    (UQAC/CENGIVRE International Research Center on Atmospheric Icing and Electrical Network Engineering, University of Quebec at Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada)

  • Gbah Koné

    (UQAC/CENGIVRE International Research Center on Atmospheric Icing and Electrical Network Engineering, University of Quebec at Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada)

Abstract

This paper presents a simple thermoelectrical temporal surface method for numerically studying the appearance of a dry band on a polluted insulator. The proposed method combines an empirical expression of the pollution layer surface conductivity, expressed as a function of the temperature and equivalent salt deposit density (ESDD), and a surface approach for modeling the pollution layer, using thermoelectrical temporal simulations based on the finite element method (FEM). Using different material substrates, pollution layer thicknesses, and ESDD levels, the reliability and limitations of the simple thermoelectrical numerical model have been studied. The numerical results obtained demonstrated that the proposed thermoelectrical model can dynamically simulate the dry band appearance in accordance with the experimental results in terms of the temporal evolution of the temperature and the pollution layer resistance, as well as the evolution of the voltage drop and E-field along the dry band formation zone. The results also demonstrate the influence of the material substrate and the pollution layer thickness, which directly influence the thermal aspect of the dry band formation. The simple thermoelectrical numerical surface model was used to study the dry band appearance on a uniformly polluted 69 kV insulator. The results obtained enabled a dynamic simulation of the appearance of the first dry band, which appeared in the middle of the insulator, and to deeply investigate the evolution of the surface temperature, electric potential, and E-field distributions along the insulator. The proposed simple thermoelectrical model combined with the empirical model is able to simulate the influence of a non-uniform pollution layer. Hence, the proposed model provides a simple numerical tool for studying the evolution of the potential and E-field distributions along uniformly and non-uniformly polluted insulation equipment to identify the probability of a region of high dry band appearance relative to the insulator material and geometry. This can aid in the development of new types of mitigation methods to improve the performance of all types of insulators under polluted conditions.

Suggested Citation

  • Marc-Alain Andoh & Christophe Volat & Gbah Koné, 2025. "A Simple Thermoelectrical Surface Approach for Numerically Studying Dry Band Formation on Polluted Insulators," Energies, MDPI, vol. 18(10), pages 1-27, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2412-:d:1651463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Ding & Yang, Shuo & Zhang, Haokang & Cao, Jin & Yan, Yuying & Chen, Hao, 2025. "Performance improvement of an automotive thermoelectric generator by introducing a novel split fin structure," Applied Energy, Elsevier, vol. 382(C).
    2. Jiahong He & Kang He & Bingtuan Gao, 2019. "Modeling of Dry Band Formation and Arcing Processes on the Polluted Composite Insulator Surface," Energies, MDPI, vol. 12(20), pages 1-20, October.
    3. Marc-Alain Andoh & Kone Gbah & Christophe Volat, 2022. "Development of a Simple Experimental Setup for the Study of the Formation of Dry Bands on Composite Insulators," Energies, MDPI, vol. 15(14), pages 1-17, July.
    4. Da Zhang & Fancui Meng, 2019. "Research on the Interrelation between Temperature Distribution and Dry Band on Wet Contaminated Insulators," Energies, MDPI, vol. 12(22), pages 1-14, November.
    5. Arshad & Muhammad Ali Mughal & Azam Nekahi & Mansoor Khan & Farhana Umer, 2018. "Influence of Single and Multiple Dry Bands on Critical Flashover Voltage of Silicone Rubber Outdoor Insulators: Simulation and Experimental Study," Energies, MDPI, vol. 11(6), pages 1-17, May.
    6. Mohammed El Amine Slama & Maurizio Albano & Abderrahmane Manu Haddad & Ronald T. Waters & Oliver Cwikowski & Ibrahim Iddrissu & Jon Knapper & Oliver Scopes, 2021. "Monitoring of Dry Bands and Discharge Activities at the Surface of Textured Insulators with AC Clean Fog Test Conditions," Energies, MDPI, vol. 14(10), pages 1-17, May.
    7. Luo, Ding & Wu, Zihao & Zhang, Ziye & Chen, Hao & Geng, Limin & Ji, Zhenhua & Zhang, Wenbo & Zhang, Peng, 2025. "Transient thermal analysis of a thermoelectric-based battery thermal management system at high temperatures," Energy, Elsevier, vol. 318(C).
    8. Marc-Alain Andoh & Christophe Volat, 2024. "Experimental Investigation of Parameters Influencing the Formation of Dry Bands and Related Electric Field," Energies, MDPI, vol. 17(10), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinpeng Hao & Jinzhu Huang & Ziyi Fang & Xiao He & Qiang Wu & Xiaolong Gu & Yu Wang & Hong Wu, 2023. "Suppression Measures of Partial Discharge at Rod–Plate Connection in Composite Tower," Energies, MDPI, vol. 16(9), pages 1-17, April.
    2. Da Zhang & Shuailin Chen, 2020. "Intelligent Recognition of Insulator Contamination Grade Based on the Deep Learning of Ultraviolet Discharge Image Information," Energies, MDPI, vol. 13(19), pages 1-16, October.
    3. Hao Yang & Haotian Zhang & Wen Cao & Xuanxiang Zhao & Ran Wen & Junping Zhao & Shengwu Tan & Pengchao Wang, 2021. "Optical Diagnostic Characterization of the Local Arc on Contaminated Insulation Surface at Low Pressure," Energies, MDPI, vol. 14(19), pages 1-11, September.
    4. Issouf Fofana & Stephan Brettschneider, 2022. "Outdoor Insulation and Gas-Insulated Switchgears," Energies, MDPI, vol. 15(21), pages 1-7, November.
    5. Arshad & Jawad Ahmad & Ahsen Tahir & Brian G. Stewart & Azam Nekahi, 2020. "Forecasting Flashover Parameters of Polymeric Insulators under Contaminated Conditions Using the Machine Learning Technique," Energies, MDPI, vol. 13(15), pages 1-16, July.
    6. Mohammed El Amine Slama & Adnan Krzma & Maurizio Albano & Abderrahmane Manu Haddad, 2022. "Experimental Study and Modeling of the Effect of ESDD/NSDD on AC Flashover of SiR Outdoor Insulators," Energies, MDPI, vol. 15(10), pages 1-14, May.
    7. Marc-Alain Andoh & Kone Gbah & Christophe Volat, 2022. "Development of a Simple Experimental Setup for the Study of the Formation of Dry Bands on Composite Insulators," Energies, MDPI, vol. 15(14), pages 1-17, July.
    8. Maurizio Albano & A. Manu Haddad & Nathan Bungay, 2019. "Is the Dry-Band Characteristic a Function of Pollution and Insulator Design?," Energies, MDPI, vol. 12(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2412-:d:1651463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.