IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2118-d1385488.html
   My bibliography  Save this article

Mean Field Game-Based Algorithms for Charging in Solar-Powered Parking Lots and Discharging into Homes a Large Population of Heterogeneous Electric Vehicles

Author

Listed:
  • Samuel M. Muhindo

    (Department of Electrical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada
    Groupe d’Études et de Recherche en Analyse des Décisions (GERAD), Montreal, QC H3T 2A7, Canada
    Réseau Québécois sur l’Énergie Intelligente (RQEI), Trois-Rivieres, QC G9A 5H7, Canada)

Abstract

An optimal daily scheme is presented to coordinate a large population of heterogeneous battery electric vehicles when charging in daytime work solar-powered parking lots and discharging into homes during evening peak-demand hours. First, we develop a grid-to-vehicle strategy to share the solar energy available in a parking lot between vehicles where the statistics of their arrival states of charge are dictated by an aggregator. Then, we develop a vehicle-to-grid strategy so that vehicle owners with a satisfactory level of energy in their batteries could help to decongest the grid when they return by providing backup power to their homes at an aggregate level per vehicle based on a duration proposed by an aggregator. Both strategies, with concepts from Mean Field Games, would be implemented to reduce the standard deviation in the states of charge of batteries at the end of charging/discharging vehicles while maintaining some fairness and decentralization criteria. Realistic numerical results, based on deterministic data while considering the physical constraints of vehicle batteries, show, first, in the case of charging in a parking lot, a strong to slight decrease in the standard deviation in the states of charge at the end, respectively, for the sunniest day, an average day, and the cloudiest day; then, in the case of discharging into the grid, over three days, we observe at the end the same strong decrease in the standard deviation in the states of charge.

Suggested Citation

  • Samuel M. Muhindo, 2024. "Mean Field Game-Based Algorithms for Charging in Solar-Powered Parking Lots and Discharging into Homes a Large Population of Heterogeneous Electric Vehicles," Energies, MDPI, vol. 17(9), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2118-:d:1385488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chandra Mouli, G.R. & Bauer, P. & Zeman, M., 2016. "System design for a solar powered electric vehicle charging station for workplaces," Applied Energy, Elsevier, vol. 168(C), pages 434-443.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    2. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
    3. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    4. Aminu Bugaje & Mathias Ehrenwirth & Christoph Trinkl & Wilfried Zörner, 2021. "Electric Two-Wheeler Vehicle Integration into Rural Off-Grid Photovoltaic System in Kenya," Energies, MDPI, vol. 14(23), pages 1-27, November.
    5. Dreucci, Damiano & Yu, Yunhe & Chandra Mouli, Gautham Ram & Shekhar, Aditya & Bauer, Pavol, 2025. "Centralised distribution grid congestion management through EV charging control considering fairness and priority," Applied Energy, Elsevier, vol. 384(C).
    6. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    7. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    8. Benedetto Aluisio & Maria Dicorato & Imma Ferrini & Giuseppe Forte & Roberto Sbrizzai & Michele Trovato, 2019. "Optimal Sizing Procedure for Electric Vehicle Supply Infrastructure Based on DC Microgrid with Station Commitment," Energies, MDPI, vol. 12(10), pages 1-19, May.
    9. Katundu Imasiku & Valerie M. Thomas, 2020. "The Mining and Technology Industries as Catalysts for Sustainable Energy Development," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    10. Nopphamat Promasa & Ekawit Songkoh & Siamrat Phonkaphon & Karun Sirichunchuen & Chaliew Ketkaew & Pramuk Unahalekhaka, 2025. "Optimization of Sizing of Battery Energy Storage System for Residential Households by Load Forecasting with Artificial Intelligence (AI): Case of EV Charging Installation," Energies, MDPI, vol. 18(5), pages 1-14, March.
    11. George-Williams, H. & Wade, N. & Carpenter, R.N., 2022. "A probabilistic framework for the techno-economic assessment of smart energy hubs for electric vehicle charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    13. Gautham Ram Chandra Mouli & Peter Van Duijsen & Francesca Grazian & Ajay Jamodkar & Pavol Bauer & Olindo Isabella, 2020. "Sustainable E-Bike Charging Station That Enables AC, DC and Wireless Charging from Solar Energy," Energies, MDPI, vol. 13(14), pages 1-21, July.
    14. Sebastian Szymon Grzesiak & Adam Sulich, 2023. "Electromobility: Logistics and Business Ecosystem Perspectives Review," Energies, MDPI, vol. 16(21), pages 1-27, October.
    15. Shubham Mishra & Shrey Verma & Subhankar Chowdhury & Ambar Gaur & Subhashree Mohapatra & Gaurav Dwivedi & Puneet Verma, 2021. "A Comprehensive Review on Developments in Electric Vehicle Charging Station Infrastructure and Present Scenario of India," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    16. Qiongjie Dai & Jicheng Liu & Qiushuang Wei, 2019. "Optimal Photovoltaic/Battery Energy Storage/Electric Vehicle Charging Station Design Based on Multi-Agent Particle Swarm Optimization Algorithm," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    17. Gheorghe Badea & Raluca-Andreea Felseghi & Mihai Varlam & Constantin Filote & Mihai Culcer & Mariana Iliescu & Maria Simona Răboacă, 2018. "Design and Simulation of Romanian Solar Energy Charging Station for Electric Vehicles," Energies, MDPI, vol. 12(1), pages 1-16, December.
    18. Mazzeo, Domenico, 2019. "Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis," Energy, Elsevier, vol. 168(C), pages 310-331.
    19. Yunhe Yu & Aditya Shekhar & Gautham Ram Chandra Mouli & Pavol Bauer, 2022. "Comparative Impact of Three Practical Electric Vehicle Charging Scheduling Schemes on Low Voltage Distribution Grids," Energies, MDPI, vol. 15(22), pages 1-24, November.
    20. Zhouquan Wu & Pradeep Krishna Bhat & Bo Chen, 2023. "Optimal Configuration of Extreme Fast Charging Stations Integrated with Energy Storage System and Photovoltaic Panels in Distribution Networks," Energies, MDPI, vol. 16(5), pages 1-20, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2118-:d:1385488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.