IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1749-d1370766.html
   My bibliography  Save this article

Micro Photosynthetic Power Cell Array for Energy Harvesting: Bio-Inspired Modeling, Testing and Verification

Author

Listed:
  • Kirankumar Kuruvinashetti

    (Optical Bio Microsystems Laboratory, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

  • Shanmuga Sundaram Pakkiriswami

    (Department of Biochemistry and Molecular Biology, Dalhousie Medicine New Brunswick (DMNB), Dalhousie University, Saint John, NB E2L 4L5, Canada)

  • Dhilippan M. Panneerselvam

    (Optical Bio Microsystems Laboratory, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

  • Muthukumaran Packirisamy

    (Optical Bio Microsystems Laboratory, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

Abstract

A micro-photosynthetic power cell (µPSC) generates electricity through the exploitation of living photosynthetic organisms through the principles of photosynthesis and respiration. Modeling such systems will enhance insights into the µPSC that can be employed to design real-time applications from µPSC. In this study, the bio-inspired electrical equivalent modeling of the array of µPSC is elucidated. The model is validated for array configurations of the micro-photosynthetic power cells. The developed arrayed model foresees the steady-state response at various electrical loadings. The polarization characteristics of the current-voltage (I-V) and current-power (I-P) characteristics of the array of µPSC in series and parallel, and their combinations in series and parallel connected µPSCs were validated with the experimental results. From this analysis, it is predicted that the arraying of the µPSC in the combination of series and parallel is the optimal array strategy to obtain the desired voltage and current from the µPSC such that it can be used to power real-time low and ultra-low power devices.

Suggested Citation

  • Kirankumar Kuruvinashetti & Shanmuga Sundaram Pakkiriswami & Dhilippan M. Panneerselvam & Muthukumaran Packirisamy, 2024. "Micro Photosynthetic Power Cell Array for Energy Harvesting: Bio-Inspired Modeling, Testing and Verification," Energies, MDPI, vol. 17(7), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1749-:d:1370766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. S. Dresselhaus & I. L. Thomas, 2001. "Alternative energy technologies," Nature, Nature, vol. 414(6861), pages 332-337, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartłomiej Igliński & Michał Bernard Pietrzak, 2025. "Renewable and Sustainable Energy—Current State and Prospects," Energies, MDPI, vol. 18(4), pages 1-8, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqin Si & Rui Lu & Zhitong Zhao & Xiaofeng Yang & Feng Wang & Huifang Jiang & Xiaolin Luo & Aiqin Wang & Zhaochi Feng & Jie Xu & Fang Lu, 2022. "Catalytic production of low-carbon footprint sustainable natural gas," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    4. Jacqueline Noga & Gregor Wolbring, 2014. "The Oil and Gas Discourse from the Perspective of the Canadian and Albertan Governments, Non-Governmental Organizations and the Oil and Gas Industry," Energies, MDPI, vol. 7(1), pages 1-20, January.
    5. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Tingke Fang & Coleman Vairin & Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2024. "Review of Fuel-Cell Electric Vehicles," Energies, MDPI, vol. 17(9), pages 1-25, April.
    7. Xu, Jiuping & Li, Li & Zheng, Bobo, 2016. "Wind energy generation technological paradigm diffusion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 436-449.
    8. Sameer Kumar & Jariah Mohd. Jan, 2014. "Research collaboration networks of two OIC nations: comparative study between Turkey and Malaysia in the field of ‘Energy Fuels’, 2009–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 387-414, January.
    9. Yan Yan & Jiancheng Guan, 2018. "How multiple networks help in creating knowledge: evidence from alternative energy patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 51-77, April.
    10. Bocheng Lv & Yu Liu & Weidong Wu & Yan Xie & Jia-Lin Zhu & Yang Cao & Wanyun Ma & Ning Yang & Weidong Chu & Yi Jia & Jinquan Wei & Jia-Lin Sun, 2022. "Local large temperature difference and ultra-wideband photothermoelectric response of the silver nanostructure film/carbon nanotube film heterostructure," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Pitchai Ragupathy & Santoshkumar Dattatray Bhat & Nallathamby Kalaiselvi, 2023. "Electrochemical energy storage and conversion: An overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    12. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Huang, Zhe & Lu, Lu & Jiang, Daqian & Xing, Defeng & Ren, Zhiyong Jason, 2017. "Electrochemical hythane production for renewable energy storage and biogas upgrading," Applied Energy, Elsevier, vol. 187(C), pages 595-600.
    14. Jiadong Chen & Chunhong Chen & Minkai Qin & Ben Li & Binbin Lin & Qing Mao & Hongbin Yang & Bin Liu & Yong Wang, 2022. "Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Huang, Junbing & Wang, Yajun & Guo, Lili, 2022. "Energy intensity and energy-specific technological progress: A case study in Guangdong province of China," Renewable Energy, Elsevier, vol. 184(C), pages 990-1001.
    16. José A. Camacho & Lucas Silva Almeida & Mercedes Rodríguez & Jesús Molina, 2022. "Domestic versus foreign energy use: an analysis for four European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4602-4622, April.
    17. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Solomon E. Uhunamure & Nthaduleni S. Nethengwe & David Tinarwo, 2021. "Development of a Comprehensive Conceptual Framework for Biogas Technology Adoption in South Africa," Resources, MDPI, vol. 10(8), pages 1-21, July.
    19. Young-Jin Ko & Chulwan Lim & Junyoung Jin & Min Gyu Kim & Ji Yeong Lee & Tae-Yeon Seong & Kwan-Young Lee & Byoung Koun Min & Jae-Young Choi & Taegeun Noh & Gyu Weon Hwang & Woong Hee Lee & Hyung-Suk O, 2024. "Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalysts for CO2 electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Wang, Yajun & Huang, Junbing, 2022. "Pathway to develop a low-carbon economy through energy-substitution technology in China," Energy, Elsevier, vol. 261(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1749-:d:1370766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.