IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1381-d1356188.html
   My bibliography  Save this article

Advancements and Future Directions in the Application of Machine Learning to AC Optimal Power Flow: A Critical Review

Author

Listed:
  • Bozhen Jiang

    (Department of Electrical and Electronic Engineering, Hong Kong Polytechnic University, Hong Kong SAR, China)

  • Qin Wang

    (Department of Electrical and Electronic Engineering, Hong Kong Polytechnic University, Hong Kong SAR, China)

  • Shengyu Wu

    (State Grid Energy Research Institute, Beijing 102209, China)

  • Yidi Wang

    (China Electric Power Research Institute, Beijing 100055, China)

  • Gang Lu

    (State Grid Energy Research Institute, Beijing 102209, China)

Abstract

Optimal power flow (OPF) is a crucial tool in the operation and planning of modern power systems. However, as power system optimization shifts towards larger-scale frameworks, and with the growing integration of distributed generations, the computational time and memory requirements of solving the alternating current (AC) OPF problems can increase exponentially with system size, posing computational challenges. In recent years, machine learning (ML) has demonstrated notable advantages in efficient computation and has been extensively applied to tackle OPF challenges. This paper presents five commonly employed OPF transformation techniques that leverage ML, offering a critical overview of the latest applications of advanced ML in solving OPF problems. The future directions in the application of machine learning to AC OPF are also discussed.

Suggested Citation

  • Bozhen Jiang & Qin Wang & Shengyu Wu & Yidi Wang & Gang Lu, 2024. "Advancements and Future Directions in the Application of Machine Learning to AC Optimal Power Flow: A Critical Review," Energies, MDPI, vol. 17(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1381-:d:1356188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    2. Mohamed S. Hashish & Hany M. Hasanien & Zia Ullah & Abdulaziz Alkuhayli & Ahmed O. Badr, 2023. "Giant Trevally Optimization Approach for Probabilistic Optimal Power Flow of Power Systems Including Renewable Energy Systems Uncertainty," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    3. Liling Sun & Jingtao Hu & Hanning Chen, 2015. "Artificial Bee Colony Algorithm Based on -Means Clustering for Multiobjective Optimal Power Flow Problem," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-18, May.
    4. Utama, Christian & Meske, Christian & Schneider, Johannes & Ulbrich, Carolin, 2022. "Reactive power control in photovoltaic systems through (explainable) artificial intelligence," Applied Energy, Elsevier, vol. 328(C).
    5. Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
    6. Robert Bixby & Edward Rothberg, 2007. "Progress in computational mixed integer programming—A look back from the other side of the tipping point," Annals of Operations Research, Springer, vol. 149(1), pages 37-41, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sina Mohammadi & Van-Hai Bui & Wencong Su & Bin Wang, 2024. "Surrogate Modeling for Solving OPF: A Review," Sustainability, MDPI, vol. 16(22), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    2. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    3. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    4. Xiaoyi Gu & Santanu S. Dey & Jean-Philippe P. Richard, 2024. "Solving Sparse Separable Bilinear Programs Using Lifted Bilinear Cover Inequalities," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 884-899, May.
    5. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    6. McIlwaine, Neil & Foley, Aoife M. & Best, Robert & Morrow, D. John & Kez, Dlzar Al, 2023. "Modelling the effect of distributed battery energy storage in an isolated power system," Energy, Elsevier, vol. 263(PC).
    7. Fernández-Blanco, Ricardo & Morales, Juan Miguel & Pineda, Salvador, 2021. "Forecasting the price-response of a pool of buildings via homothetic inverse optimization," Applied Energy, Elsevier, vol. 290(C).
    8. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.
    9. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    10. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    11. Amaro Sousa & Carlos Borges Lopes & Paulo Monteiro, 2016. "Compact ILP formulations for the routing and wavelength assignment problem in the design of optical transport networks with regenerators," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(2), pages 189-213, May.
    12. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    13. Paul Arévalo & Francisco Jurado, 2024. "Impact of Artificial Intelligence on the Planning and Operation of Distributed Energy Systems in Smart Grids," Energies, MDPI, vol. 17(17), pages 1-22, September.
    14. Xi He & Heng Dong & Wanli Yang & Wei Li, 2023. "Multi-Source Information Fusion Technology and Its Application in Smart Distribution Power System," Sustainability, MDPI, vol. 15(7), pages 1-16, April.
    15. Roger Rocha & Ignacio Grossmann & Marcus Poggi de Aragão, 2013. "Cascading Knapsack Inequalities: reformulation of a crude oil distribution problem," Annals of Operations Research, Springer, vol. 203(1), pages 217-234, March.
    16. Wei, Zhinong & Yang, Li & Chen, Sheng & Ma, Zhoujun & Zang, Haixiang & Fei, Youdie, 2022. "A multi-stage planning model for transitioning to low-carbon integrated electric power and natural gas systems," Energy, Elsevier, vol. 254(PC).
    17. Ndayikengurutse Adrien & Huang Siming, 2020. "Implementation of Presolving and Interior-Point Algorithm for Linear & Mixed Integer Programming: SOFTWARE," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 195-223, June.
    18. Huang, Wanjun & Zhang, Xinran & Zheng, Weiye, 2021. "Resilient power network structure for stable operation of energy systems: A transfer learning approach," Applied Energy, Elsevier, vol. 296(C).
    19. Xin-Cheng Meng & Yeon-Ho Seong & Min-Kyu Lee, 2021. "Research Characteristics and Development Trend of Global Low-Carbon Power—Based on Bibliometric Analysis of 1983–2021," Energies, MDPI, vol. 14(16), pages 1-20, August.
    20. Valerio Mariani & Giovanna Adinolfi & Amedeo Buonanno & Roberto Ciavarella & Antonio Ricca & Vincenzo Sorrentino & Giorgio Graditi & Maria Valenti, 2024. "A Survey on Anomalies and Faults That May Impact the Reliability of Renewable-Based Power Systems," Sustainability, MDPI, vol. 16(14), pages 1-29, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1381-:d:1356188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.