IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1256-d1352255.html
   My bibliography  Save this article

Forecasting Solar Energy Generation and Household Energy Usage for Efficient Utilisation

Author

Listed:
  • Aistis Raudys

    (Institute of Computer Science, Vilnius University, Didlaukio g. 47, LT-08303 Vilnius, Lithuania)

  • Julius Gaidukevičius

    (Institute of Computer Science, Vilnius University, Didlaukio g. 47, LT-08303 Vilnius, Lithuania)

Abstract

In this study, a prototype was developed for the effective utilisation of a domestic solar power plant. The basic idea is to switch on certain electrical appliances when the surplus of generated energy is predicted one hour in advance, for example, switching on a pump motor for watering a garden. This prediction is important because some devices (motors) wear out if they are switched on and off too frequently. If a solar power plant generates more energy than a household can consume, the surplus energy is fed into the main grid for storage. If a household has an energy shortage, the same energy is bought back at a higher price. In this study, data were collected from solar inverters, historical weather APIs and smart energy meters. This study describes the data preparation process and feature engineering that will later be used to create forecasting models. This study consists of two forecasting models: solar energy generation and household electricity consumption. Both types of model were tested using Facebook Prophet and different neural network architectures: feedforward, long short-term memory (LSTM) and gated recurrent unit (GRU) networks. In addition, a baseline model was developed to compare the prediction accuracy.

Suggested Citation

  • Aistis Raudys & Julius Gaidukevičius, 2024. "Forecasting Solar Energy Generation and Household Energy Usage for Efficient Utilisation," Energies, MDPI, vol. 17(5), pages 1-33, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1256-:d:1352255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Di Leo & Alessandro Ciocia & Gabriele Malgaroli & Filippo Spertino, 2025. "Advancements and Challenges in Photovoltaic Power Forecasting: A Comprehensive Review," Energies, MDPI, vol. 18(8), pages 1-28, April.
    2. Pruethsan Sutthichaimethee & Grzegorz Mentel & Volodymyr Voloshyn & Halyna Mishchuk & Yuriy Bilan, 2024. "Modeling the Efficiency of Resource Consumption Management in Construction Under Sustainability Policy: Enriching the DSEM-ARIMA Model," Sustainability, MDPI, vol. 16(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
    2. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    3. Yu, Dejian & Xiang, Bo, 2024. "An ESTs detection research based on paper entity mapping: Combining scientific text modeling and neural prophet," Journal of Informetrics, Elsevier, vol. 18(4).
    4. Andrea Kolková, 2024. "Data Analysis in Demand Forecasting: A Case Study of Poetry Book Sales in the European Area," Central European Business Review, Prague University of Economics and Business, vol. 2024(5), pages 51-69.
    5. Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    6. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    7. Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
    8. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    9. Apostolos Giannoulidis & Anastasios Gounaris & Athanasios Naskos & Nikodimos Nikolaidis & Daniel Caljouw, 2025. "Engineering and evaluating an unsupervised predictive maintenance solution: a cold-forming press case-study," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2121-2139, March.
    10. Yinghui Huang & Hui Liu & Lin Zhang & Shen Li & Weijun Wang & Zhihong Ren & Zongkui Zhou & Xueyao Ma, 2021. "The Psychological and Behavioral Patterns of Online Psychological Help-Seekers before and during COVID-19 Pandemic: A Text Mining-Based Longitudinal Ecological Study," IJERPH, MDPI, vol. 18(21), pages 1-19, November.
    11. Oras Baker & Zahra Ziran & Massimo Mecella & Kasthuri Subaramaniam & Sellappan Palaniappan, 2025. "Predictive Modeling for Pandemic Forecasting: A COVID-19 Study in New Zealand and Partner Countries," IJERPH, MDPI, vol. 22(4), pages 1-22, April.
    12. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    13. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    14. Emir Zunic & Kemal Korjenic & Kerim Hodzic & Dzenana Donko, 2020. "Application of Facebook's Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data," Papers 2005.07575, arXiv.org.
    15. Vladislav Bína, Jitka Bartosová, Vladimir Pribyl, 2022. "Anomaly Detection in Time Series for Smart Agriculture," International Journal of Management, Knowledge and Learning, ToKnowPress, vol. 11, pages 177-186.
    16. Natalia Turdyeva & Anna Tsvetkova & Levon Movsesyan & Alexey Porshakov & Dmitriy Chernyadyev, 2021. "Data of Sectoral Financial Flows as a High-Frequency Indicator of Economic Activity," Russian Journal of Money and Finance, Bank of Russia, vol. 80(2), pages 28-49, June.
    17. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    18. Vásquez Sáenz, Javier & Quiroga, Facundo Manuel & Bariviera, Aurelio F., 2023. "Data vs. information: Using clustering techniques to enhance stock returns forecasting," International Review of Financial Analysis, Elsevier, vol. 88(C).
    19. Ran Sun & James Nolan & Suren Kulshreshtha, 2022. "Agent-based modeling of policy induced agri-environmental technology adoption," SN Business & Economics, Springer, vol. 2(8), pages 1-26, August.
    20. Hasan Fallahgoul, 2020. "Inside the Mind of Investors During the COVID-19 Pandemic: Evidence from the StockTwits Data," Papers 2004.11686, arXiv.org, revised May 2020.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1256-:d:1352255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.