IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p823-d1336331.html
   My bibliography  Save this article

Research on Wellbore Stability in Deepwater Hydrate-Bearing Formations during Drilling

Author

Listed:
  • Ting Sun

    (College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102200, China)

  • Zhiliang Wen

    (College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102200, China)

  • Jin Yang

    (College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102200, China)

Abstract

Marine gas hydrate formations are characterized by considerable water depth, shallow subsea burial, loose strata, and low formation temperatures. Drilling in such formations is highly susceptible to hydrate dissociation, leading to gas invasion, wellbore instability, reservoir subsidence, and sand production, posing significant safety challenges. While previous studies have extensively explored multiphase flow dynamics between the formation and the wellbore during conventional oil and gas drilling, a clear understanding of wellbore stability under the unique conditions of gas hydrate formation drilling remains elusive. Considering the effect of gas hydrate decomposition on formation and reservoir frame deformation, a multi-field coupled mathematical model of seepage, heat transfer, phase transformation, and deformation of near-wellbore gas hydrate formation during drilling is established in this paper. Based on the well logging data of gas hydrate formation at SH2 station in the Shenhu Sea area, the finite element method is used to simulate the drilling conditions of 0.1 MPa differential pressure underbalance drilling with a borehole opening for 36 h. The study results demonstrate a significant tendency for wellbore instability during the drilling process in natural gas hydrate formations, largely due to the decomposition of hydrates. Failure along the minimum principal stress direction in the wellbore wall begins to manifest at around 24.55 h. This is accompanied by an increased displacement velocity of the wellbore wall towards the well axis in the maximum principal stress direction. By 28.07 h, plastic failure is observed around the entire circumference of the well, leading to wellbore collapse at 34.57 h. Throughout this process, the hydrate decomposition extends approximately 0.55 m, predominantly driven by temperature propagation. When hydrate decomposition is taken into account, the maximum equivalent plastic strain in the wellbore wall is found to increase by a factor of 2.1 compared to scenarios where it is not considered. These findings provide crucial insights for enhancing the safety of drilling operations in hydrate-bearing formations.

Suggested Citation

  • Ting Sun & Zhiliang Wen & Jin Yang, 2024. "Research on Wellbore Stability in Deepwater Hydrate-Bearing Formations during Drilling," Energies, MDPI, vol. 17(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:823-:d:1336331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/823/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Lu & Zhang, Liang & Zhang, Rui & Ren, Shaoran, 2018. "Assessment of natural gas production from hydrate-bearing sediments with unconsolidated argillaceous siltstones via a controlled sandout method," Energy, Elsevier, vol. 160(C), pages 654-667.
    2. Yin, Zhenyuan & Moridis, George & Chong, Zheng Rong & Tan, Hoon Kiang & Linga, Praveen, 2018. "Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium," Applied Energy, Elsevier, vol. 230(C), pages 444-459.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    2. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    3. Zhang, Liang & Chao, Jiahao & Geng, Songhe & Zhao, Zhen & Chen, Huijuan & Luo, Yinfei & Qin, Guangxiong, 2020. "Particle migration and blockage in geothermal reservoirs during water reinjection: Laboratory experiment and reaction kinetic model," Energy, Elsevier, vol. 206(C).
    4. Zhu, Huixing & Xu, Tianfu & Yuan, Yilong & Xia, Yingli & Xin, Xin, 2020. "Numerical investigation of the natural gas hydrate production tests in the Nankai Trough by incorporating sand migration," Applied Energy, Elsevier, vol. 275(C).
    5. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Tu, Guigang & Nie, Shuaishuai & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2022. "Commercial production potential evaluation of injection-production mode for CH-Bk hydrate reservoir and investigation of its stimulated potential by fracture network," Energy, Elsevier, vol. 239(PB).
    6. Mao, Peixiao & Wu, Nengyou & Wan, Yizhao & Hu, Gaowei & Wang, Xingxing, 2023. "Optimization of a multi-fractured multilateral well network in advantageous structural positions of ultralow-permeability hydrate reservoirs," Energy, Elsevier, vol. 268(C).
    7. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    8. Zhen Zhao & Guangxiong Qin & Yinfei Luo & Songhe Geng & Linchao Yang & Ronghua Wen & Jiahao Chao & Liang Zhang, 2021. "Experimental Study on Reservoir Physical Properties and Formation Blockage Risk in Geothermal Water Reinjection in Xining Basin: Taking Well DR2018 as an Example," Energies, MDPI, vol. 14(9), pages 1-19, May.
    9. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).
    10. Hao, Yongmao & Liang, Jikai & Zhan, Shiyuan & Fan, Mingwu & Wang, Jiandong & Li, Shuxia & Yang, Fan & Yang, Shiwei & Wang, Chuanming, 2022. "Dynamic analysis on edge of sand detachment of natural gas hydrate reservoir," Energy, Elsevier, vol. 238(PB).
    11. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
    12. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    13. Luo, Tingting & Li, Yanghui & Madhusudhan, B.N. & Sun, Xiang & Song, Yongchen, 2020. "Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery," Applied Energy, Elsevier, vol. 276(C).
    14. Zhao, Ermeng & Hou, Jian & Liu, Yongge & Ji, Yunkai & Liu, Wenbin & Lu, Nu & Bai, Yajie, 2020. "Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea," Energy, Elsevier, vol. 213(C).
    15. Sun, Shicai & Gu, Linlin & Tian, Wanxin & Lin, Haifei & Yang, Zhendong, 2023. "Percolation characteristics of pore fluid during hydrate depressurization dissociation from multi-phase multi-field coupling analysis," Energy, Elsevier, vol. 281(C).
    16. Lu Yu & Hongfeng Lu & Liang Zhang & Chenlu Xu & Zenggui Kuang & Xian Li & Han Yu & Yejia Wang, 2023. "Assessment of Gas Production from Complex Hydrate System in Qiongdongnan Basin of South China Sea," Energies, MDPI, vol. 16(21), pages 1-25, November.
    17. Hao Peng & Xiaosen Li & Zhaoyang Chen & Yu Zhang & Changyu You, 2022. "Key Points and Current Studies on Seepage Theories of Marine Natural Gas Hydrate-Bearing Sediments: A Narrative Review," Energies, MDPI, vol. 15(14), pages 1-33, July.
    18. Dong, Lin & Wan, Yizhao & Li, Yanlong & Liao, Hualin & Liu, Changling & Wu, Nengyou & Leonenko, Yuri, 2022. "3D numerical simulation on drilling fluid invasion into natural gas hydrate reservoirs," Energy, Elsevier, vol. 241(C).
    19. Tian, Hailong & Yu, Ceting & Xu, Tianfu & Liu, Changling & Jia, Wei & Li, Yuanping & Shang, Songhua, 2020. "Combining reactive transport modeling with geochemical observations to estimate the natural gas hydrate accumulation," Applied Energy, Elsevier, vol. 275(C).
    20. Zhiying Liu & Qianghui Xu & Junyu Yang & Lin Shi, 2023. "Pore-Scale Modeling of Methane Hydrate Dissociation Using a Multiphase Micro-Continuum Framework," Energies, MDPI, vol. 16(22), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:823-:d:1336331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.