IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7513-d676139.html
   My bibliography  Save this article

The Effects of the Length and Conductivity of Artificial Fracture on Gas Production from a Class 3 Hydrate Reservoir

Author

Listed:
  • Shilong Shang

    (College of Engineering, Peking University, Beijing 100871, China
    Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China)

  • Lijuan Gu

    (Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China)

  • Hailong Lu

    (Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China)

Abstract

Natural gas hydrate is considered as a potential energy resource. To develop technologies for the exploitation of natural gas hydrate, several field gas production tests have been carried out in permafrost and continental slope sediments. However, the gas production rates in these tests were still limited, and the low permeability of the hydrate-bearing sediments is identified as one of the crucial factors. Artificial fracturing is proposed to promote gas production rate by improving reservoir permeability. In this research, numerical studies about the effect of fracture length and fluid conductivity on production performance were carried out on an artificially fractured Class 3 hydrate reservoir (where the single hydrate zone is surrounded by an overlaying and underlying hydrate-free zone), in which the equivalent conductivity method was applied to depict the artificial fracture. The results show that artificial fracture can enhance gas production by offering an extra fluid flow channel for the migration of gas released from hydrate dissociation. The effect of fracture length on production is closely related to the time frame of production, and gas production improvement by enlarging the fracture length is observed after a certain production duration. Through the production process, secondary hydrate formation is absent in the fracture, and the high conductivity in the fracture is maintained. The results indicate that the increase in fracture conductivity has a limited effect on enhancing gas production.

Suggested Citation

  • Shilong Shang & Lijuan Gu & Hailong Lu, 2021. "The Effects of the Length and Conductivity of Artificial Fracture on Gas Production from a Class 3 Hydrate Reservoir," Energies, MDPI, vol. 14(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7513-:d:676139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yin, Zhenyuan & Moridis, George & Tan, Hoon Kiang & Linga, Praveen, 2018. "Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium," Applied Energy, Elsevier, vol. 220(C), pages 681-704.
    2. Chen Chen & Lin Yang & Rui Jia & Youhong Sun & Wei Guo & Yong Chen & Xitong Li, 2017. "Simulation Study on the Effect of Fracturing Technology on the Production Efficiency of Natural Gas Hydrate," Energies, MDPI, vol. 10(8), pages 1-16, August.
    3. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    4. Yin, Zhenyuan & Moridis, George & Chong, Zheng Rong & Tan, Hoon Kiang & Linga, Praveen, 2018. "Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium," Applied Energy, Elsevier, vol. 230(C), pages 444-459.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    2. Yin, Zhenyuan & Zhang, Shuyu & Koh, Shanice & Linga, Praveen, 2020. "Estimation of the thermal conductivity of a heterogeneous CH4-hydrate bearing sample based on particle swarm optimization," Applied Energy, Elsevier, vol. 271(C).
    3. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    4. Wan, Qing-Cui & Si, Hu & Li, Gang & Feng, Jing-Chun & Li, Bo, 2020. "Heterogeneity properties of methane hydrate formation in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 261(C).
    5. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).
    6. Yin, Zhenyuan & Wan, Qing-Cui & Gao, Qiang & Linga, Praveen, 2020. "Effect of pressure drawdown rate on the fluid production behaviour from methane hydrate-bearing sediments," Applied Energy, Elsevier, vol. 271(C).
    7. Hao Peng & Xiaosen Li & Zhaoyang Chen & Yu Zhang & Changyu You, 2022. "Key Points and Current Studies on Seepage Theories of Marine Natural Gas Hydrate-Bearing Sediments: A Narrative Review," Energies, MDPI, vol. 15(14), pages 1-33, July.
    8. Dong, Lin & Wan, Yizhao & Li, Yanlong & Liao, Hualin & Liu, Changling & Wu, Nengyou & Leonenko, Yuri, 2022. "3D numerical simulation on drilling fluid invasion into natural gas hydrate reservoirs," Energy, Elsevier, vol. 241(C).
    9. Jianchun Xu & Ziwei Bu & Hangyu Li & Xiaopu Wang & Shuyang Liu, 2022. "Permeability Models of Hydrate-Bearing Sediments: A Comprehensive Review with Focus on Normalized Permeability," Energies, MDPI, vol. 15(13), pages 1-65, June.
    10. Tian, Hailong & Yu, Ceting & Xu, Tianfu & Liu, Changling & Jia, Wei & Li, Yuanping & Shang, Songhua, 2020. "Combining reactive transport modeling with geochemical observations to estimate the natural gas hydrate accumulation," Applied Energy, Elsevier, vol. 275(C).
    11. Zhiying Liu & Qianghui Xu & Junyu Yang & Lin Shi, 2023. "Pore-Scale Modeling of Methane Hydrate Dissociation Using a Multiphase Micro-Continuum Framework," Energies, MDPI, vol. 16(22), pages 1-25, November.
    12. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    13. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    14. Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
    15. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    16. Zhen Li & Erik Spangenberg & Judith M. Schicks & Thomas Kempka, 2022. "Numerical Simulation of Hydrate Formation in the LArge-Scale Reservoir Simulator (LARS)," Energies, MDPI, vol. 15(6), pages 1-27, March.
    17. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    18. Zhang, Yiqun & Zhang, Panpan & Hui, Chengyu & Tian, Shouceng & Zhang, Bo, 2023. "Numerical analysis of the geomechanical responses during natural gas hydrate production by multilateral wells," Energy, Elsevier, vol. 269(C).
    19. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Zhai, Lianghao & Li, Xitong & Tu, Guigang & Chen, Chen, 2021. "Fracture network stimulation effect on hydrate development by depressurization combined with thermal stimulation using injection-production well patterns," Energy, Elsevier, vol. 228(C).
    20. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Tu, Guigang & Nie, Shuaishuai & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2022. "Commercial production potential evaluation of injection-production mode for CH-Bk hydrate reservoir and investigation of its stimulated potential by fracture network," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7513-:d:676139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.