IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p678-d1330349.html
   My bibliography  Save this article

Optimizing CO 2 -Water Injection Ratio in Heterogeneous Reservoirs: Implications for CO 2 Geo-Storage

Author

Listed:
  • Emad A. Al-Khdheeawi

    (Oil and Gas Engineering Department, University of Technology-Iraq, Baghdad 10066, Iraq
    Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth 6845, Australia)

Abstract

The performance of carbon geo-sequestration is influenced by several parameters, such as the heterogeneity of the reservoir, the characteristics of the caprock, the wettability of the rock, and the salinity of the aquifer brine. Although many characteristics, like the formation geology, are fixed and cannot be altered, it is feasible to choose and manipulate other parameters in order to design an optimized storage programme such as the implementation of CO 2 injection techniques, including continuous injection or water alternating CO 2 , which can significantly increase storage capacity and guarantee secure containment. Although WAG (water-alternating-gas) technology has been widely applied in several industrial sectors such as enhanced oil recovery (EOR) and CO 2 geo-sequestration, the impact of the CO 2 -to-water ratio on the performance of CO 2 geo-sequestration in heterogeneous formations has not been investigated. In this study, we have constructed a 3D heterogeneous reservoir model to simulate the injection of water alternating gas in deep reservoirs. We have tested several CO 2 -water ratios, specifically the 2:1, 1:1, and 1:2 ratios. Additionally, we have estimated the capacity of CO 2 trapping, as well as the mobility and migration of CO 2 . Our findings indicate that injecting a low ratio of CO 2 to water (specifically 1:2) resulted in a much better performance compared to situations with no water injection and high CO 2 -water ratios. The residual and solubility trappings were notably increased by 11% and 19%, respectively, but the presence of free mobile CO 2 was reduced by 27%. Therefore, in the reservoir under investigation, the lower CO 2 -water ratio is recommended due to its improvement in CO 2 storage capacity and containment security.

Suggested Citation

  • Emad A. Al-Khdheeawi, 2024. "Optimizing CO 2 -Water Injection Ratio in Heterogeneous Reservoirs: Implications for CO 2 Geo-Storage," Energies, MDPI, vol. 17(3), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:678-:d:1330349
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/678/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holloway, S., 2005. "Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option," Energy, Elsevier, vol. 30(11), pages 2318-2333.
    2. Si Le Van & Bo Hyun Chon, 2017. "Applicability of an Artificial Neural Network for Predicting Water-Alternating-CO 2 Performance," Energies, MDPI, vol. 10(7), pages 1-20, June.
    3. Emad A. Al-Khdheeawi & Doaa Saleh Mahdi & Yujie Yuan & Stefan Iglauer, 2023. "Influence of Clay Content on CO 2 -Rock Interaction and Mineral-Trapping Capacity of Sandstone Reservoirs," Energies, MDPI, vol. 16(8), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Bosetti & Laurent Gilotte, 2005. "Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?," Working Papers 2005.86, Fondazione Eni Enrico Mattei.
    2. Hu, Haixiang & Li, Xiaochun & Fang, Zhiming & Wei, Ning & Li, Qianshu, 2010. "Small-molecule gas sorption and diffusion in coal: Molecular simulation," Energy, Elsevier, vol. 35(7), pages 2939-2944.
    3. Procesi, M. & Cantucci, B. & Buttinelli, M. & Armezzani, G. & Quattrocchi, F. & Boschi, E., 2013. "Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Latium Region case study (Central Italy)," Applied Energy, Elsevier, vol. 110(C), pages 104-131.
    4. Chang, Ailian & Sun, HongGuang & Zheng, Chunmiao & Lu, Bingqing & Lu, Chengpeng & Ma, Rui & Zhang, Yong, 2018. "A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 356-369.
    5. Zhang, Xiaogang & Ranjith, P.G. & Ranathunga, A.S., 2019. "Sub- and super-critical carbon dioxide flow variations in large high-rank coal specimen: An experimental study," Energy, Elsevier, vol. 181(C), pages 148-161.
    6. Dang, Zheng & Wang, Xiaoming & Bie, Shizhen & Su, Xianbo & Hou, Shihui, 2024. "Experimental study of water occurrence in coal under different negative pressure conditions: Implication for CBM productivity during negative pressure drainage," Energy, Elsevier, vol. 303(C).
    7. Matovic, Darko, 2011. "Biochar as a viable carbon sequestration option: Global and Canadian perspective," Energy, Elsevier, vol. 36(4), pages 2011-2016.
    8. Perera, M.S.A. & Ranjith, P.G. & Choi, S.K. & Airey, D., 2011. "The effects of sub-critical and super-critical carbon dioxide adsorption-induced coal matrix swelling on the permeability of naturally fractured black coal," Energy, Elsevier, vol. 36(11), pages 6442-6450.
    9. Emad A. Al-Khdheeawi & Doaa Saleh Mahdi, 2019. "Apparent Viscosity Prediction of Water-Based Muds Using Empirical Correlation and an Artificial Neural Network," Energies, MDPI, vol. 12(16), pages 1-10, August.
    10. Buttinelli, M. & Procesi, M. & Cantucci, B. & Quattrocchi, F. & Boschi, E., 2011. "The geo-database of caprock quality and deep saline aquifers distribution for geological storage of CO2 in Italy," Energy, Elsevier, vol. 36(5), pages 2968-2983.
    11. Singh, A.K. & Goerke, U.-J. & Kolditz, O., 2011. "Numerical simulation of non-isothermal compositional gas flow: Application to carbon dioxide injection into gas reservoirs," Energy, Elsevier, vol. 36(5), pages 3446-3458.
    12. Mohamad Reza Soltanian & Mohammad Amin Amooie & David Cole & David Graham & Susan Pfiffner & Tommy Phelps & Joachim Moortgat, 2018. "Transport of perfluorocarbon tracers in the Cranfield Geological Carbon Sequestration Project," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(4), pages 650-671, August.
    13. Bocoum, Alassane Oumar & Rasaei, Mohammad Reza, 2023. "Multi-objective optimization of WAG injection using machine learning and data-driven Proxy models," Applied Energy, Elsevier, vol. 349(C).
    14. Hyun Sic Park & Ju Sung Lee & JunYoung Han & Sangwon Park & Jinwon Park & Byoung Ryul Min, 2015. "CO2 Fixation by Membrane Separated NaCl Electrolysis," Energies, MDPI, vol. 8(8), pages 1-12, August.
    15. Jafari, Mohammad & Cao, Shuang Cindy & Jung, Jongwon, 2017. "Geological CO2 sequestration in saline aquifers: Implication on potential solutions of China’s power sector," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 137-155.
    16. Ricci, Elena Claire & Bosetti, Valentina & Baker, Erin & Jenni, Karen E., 2014. "From Expert Elicitations to Integrated Assessment: Future Prospects of Carbon Capture Technologies," Climate Change and Sustainable Development 172451, Fondazione Eni Enrico Mattei (FEEM).
    17. Furqan Hussain & Karsten Michael & Yildiray Cinar, 2016. "A numerical study of the effect of brine displaced from CO 2 storage in a saline formation on groundwater," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(1), pages 94-111, February.
    18. Jinkai Wang & Hengyi Liu & Jinliang Zhang & Jun Xie, 2018. "Lost Gas Mechanism and Quantitative Characterization during Injection and Production of Water-Flooded Sandstone Underground Gas Storage," Energies, MDPI, vol. 11(2), pages 1-26, January.
    19. Shafaei, Mohammad Javad & Abedi, Jalal & Hassanzadeh, Hassan & Chen, Zhangxin, 2012. "Reverse gas-lift technology for CO2 storage into deep saline aquifers," Energy, Elsevier, vol. 45(1), pages 840-849.
    20. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:678-:d:1330349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.