IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p481-d1322011.html
   My bibliography  Save this article

Unveiling the Spatial Distribution of Heat Demand in North-West-Europe Compiled with National Heat Consumption Data

Author

Listed:
  • Alexander Jüstel

    (Geological Institute, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
    Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany)

  • Elias Humm

    (Geological Institute, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
    Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany)

  • Eileen Herbst

    (Geological Institute, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
    Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany)

  • Frank Strozyk

    (Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany)

  • Peter Kukla

    (Geological Institute, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany)

  • Rolf Bracke

    (Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Am Hochschulcampus 1, 44801 Bochum, Germany
    Geothermal Energy Systems, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany)

Abstract

Space and water heating for residential and commercial buildings amount to a third of the European Union’s total final energy consumption. Approximately 75% of the primary energy is still produced by burning fossil fuels, leading to high greenhouse gas emissions in the heating sector. Therefore, policymakers increasingly strive to trigger investments in sustainable and low-emission heating systems. This study forms part of the “Roll-out of Deep Geothermal Energy in North-West-Europe”-project and aims at quantifying the spatial heat demand distribution in the Interreg North-West-Europe region. An open-source geographic information system and selected Python packages for advanced geospatial processing, analysis, and visualization are utilized to constrain the maps. These were combined, streamlined, and optimized within the open-source Python package PyHeatDemand. Based on national and regional heat demand input data, three maps are developed to better constrain heat demand at a high spatial resolution of 100 m × 100 m (=1 ha) for the residential and commercial sectors, and for both together (in total). The developed methodology can not only be applied to transnational heat demand mapping but also on various scales ranging from city district level to states and countries. In addition, the workflow is highly flexible working with raster data, vector data, and tabular data. The results reveal a total heat demand of the Interreg North-West-Europe region of around 1700 TWh. The spatial distribution of the heat demand follows specific patterns, where heat demand peaks are usually in metropolitan regions like for the city of Paris (1400 MWh/ha), the city of Brussels (1300 MWh/ha), the London metropolitan area (520 MWh/ha), and the Rhine-Ruhr region (500 MWh/ha). The developed maps are compared with two international projects, Hotmaps and Heat Roadmap Europe’s Pan European Thermal Atlas. The average total heat demand difference from values obtained in this study to Hotmaps and Heat Roadmap Europe is 24 MWh/ha and 84 MWh/ha, respectively. Assuming the implementation of real consumption data, an enhancement in spatial predictability is expected. The heat demand maps are therefore predestined to provide a conceptual first overview for decision-makers and market investors. The developed methods will further allow for anticipated mandatory municipal heat demand analyses.

Suggested Citation

  • Alexander Jüstel & Elias Humm & Eileen Herbst & Frank Strozyk & Peter Kukla & Rolf Bracke, 2024. "Unveiling the Spatial Distribution of Heat Demand in North-West-Europe Compiled with National Heat Consumption Data," Energies, MDPI, vol. 17(2), pages 1-36, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:481-:d:1322011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/481/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/481/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lesley Thomson & David Jenkins, 2023. "The Use of Real Energy Consumption Data in Characterising Residential Energy Demand with an Inventory of UK Datasets," Energies, MDPI, vol. 16(16), pages 1-29, August.
    2. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Lund, Rasmus Søgaard & Mathiesen, Brian Vad, 2019. "Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies," Energy, Elsevier, vol. 177(C), pages 554-564.
    3. Yang, Xining & Hu, Mingming & Heeren, Niko & Zhang, Chunbo & Verhagen, Teun & Tukker, Arnold & Steubing, Bernhard, 2020. "A combined GIS-archetype approach to model residential space heating energy: A case study for the Netherlands including validation," Applied Energy, Elsevier, vol. 280(C).
    4. Malte Schwanebeck & Marcus Krüger & Rainer Duttmann, 2021. "Improving GIS-Based Heat Demand Modelling and Mapping for Residential Buildings with Census Data Sets at Regional and Sub-Regional Scales," Energies, MDPI, vol. 14(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    2. Józef Paska & Tomasz Surma & Paweł Terlikowski & Krzysztof Zagrajek, 2020. "Electricity Generation from Renewable Energy Sources in Poland as a Part of Commitment to the Polish and EU Energy Policy," Energies, MDPI, vol. 13(16), pages 1-31, August.
    3. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    4. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    5. Nielsen, Steffen & Østergaard, Poul Alberg & Sperling, Karl, 2023. "Renewable energy transition, transmission system impacts and regional development – a mismatch between national planning and local development," Energy, Elsevier, vol. 278(PA).
    6. Bachmann, Max & Kriegel, Martin, 2023. "Assessing the heat distribution costs of linear and radial district heating networks: A methodological approach," Energy, Elsevier, vol. 276(C).
    7. Sahoo, Somadutta & van Stralen, Joost N.P. & Zuidema, Christian & Sijm, Jos & Yamu, Claudia & Faaij, André, 2022. "Regionalization of a national integrated energy system model: A case study of the northern Netherlands," Applied Energy, Elsevier, vol. 306(PB).
    8. Schifflechner, Christopher & Dawo, Fabian & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2020. "Thermodynamic comparison of direct supercritical CO2 and indirect brine-ORC concepts for geothermal combined heat and power generation," Renewable Energy, Elsevier, vol. 161(C), pages 1292-1302.
    9. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    10. Pia Manz & Katerina Kermeli & Urban Persson & Marius Neuwirth & Tobias Fleiter & Wina Crijns-Graus, 2021. "Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites?," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    11. Andreas Müller & Marcus Hummel & Lukas Kranzl & Mostafa Fallahnejad & Richard Büchele, 2019. "Open Source Data for Gross Floor Area and Heat Demand Density on the Hectare Level for EU 28," Energies, MDPI, vol. 12(24), pages 1-25, December.
    12. Nis Bertelsen & Brian Vad Mathiesen, 2020. "EU-28 Residential Heat Supply and Consumption: Historical Development and Status," Energies, MDPI, vol. 13(8), pages 1-21, April.
    13. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
    14. Athanasia Apostolopoulou & Mingyu Zhu & Jiayi Jin, 2023. "Parametric Assessment of Building Heating Demand for Different Levels of Details and User Comfort Levels: A Case Study in London, UK," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    15. Stef Jacobs & Margot De Pauw & Senne Van Minnebruggen & Sara Ghane & Thomas Huybrechts & Peter Hellinckx & Ivan Verhaert, 2023. "Grouped Charging of Decentralised Storage to Efficiently Control Collective Heating Systems: Limitations and Opportunities," Energies, MDPI, vol. 16(8), pages 1-28, April.
    16. Abdulraheem Salaymeh & Irene Peters & Stefan Holler, 2024. "Factoring Building Refurbishment and Climatic Effect into Heat Demand Assessments and Forecasts: Case Study and Open Datasets for Germany," Energies, MDPI, vol. 17(3), pages 1-21, January.
    17. Nérot, B. & Lamaison, N. & Mabrouk, M.T. & Bavière, R. & Lacarrière, B., 2023. "Optimization framework for evaluating urban thermal systems potential," Energy, Elsevier, vol. 270(C).
    18. Leurent, Martin, 2019. "Analysis of the district heating potential in French regions using a geographic information system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Gonzalo Sánchez-Barroso & Jaime González-Domínguez & Justo García-Sanz-Calcedo, 2020. "Potential Savings in DHW Facilities through the Use of Solar Thermal Energy in the Hospitals of Extremadura (Spain)," IJERPH, MDPI, vol. 17(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:481-:d:1322011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.