IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p310-d1315114.html
   My bibliography  Save this article

A Review of the Synthesis of Biopolymer Hydrogel Electrolytes for Improved Electrode–Electrolyte Interfaces in Zinc-Ion Batteries

Author

Listed:
  • Veerle Vandeginste

    (KU Leuven, Campus Bruges, Department of Materials Engineering, Surface and Interface Engineered Materials, 8200 Bruges, Belgium)

  • Junru Wang

    (KU Leuven, Campus Bruges, Department of Materials Engineering, Surface and Interface Engineered Materials, 8200 Bruges, Belgium)

Abstract

The market for electric vehicles and portable and wearable electronics is expanding rapidly. Lithium-ion batteries currently dominate the market, but concerns persist regarding cost and safety. Consequently, alternative battery chemistries are investigated, with zinc-ion batteries (ZIBs) emerging as promising candidates due to their favorable characteristics, including safety, cost-effectiveness, theoretical volumetric capacity, energy density, and ease of manufacturing. Hydrogel electrolytes stand out as advantageous for ZIBs compared to aqueous electrolytes. This is attributed to their potential application in flexible batteries for wearables and their beneficial impact in suppressing water-induced side reactions, zinc dendrite formation, electrode dissolution, and the risk of water leakage. The novelty of this review lies in highlighting the advancements in the design and synthesis of biopolymer hydrogel electrolytes in ZIBs over the past six years. Notable biopolymers include cellulose, carboxymethyl cellulose, chitosan, alginate, gelatin, agar, and gum. Also, double-network and triple-network hydrogel electrolytes have been developed where biopolymers were combined with synthetic polymers, in particular, polyacrylamide. Research efforts have primarily focused on enhancing the mechanical properties and ionic conductivity of hydrogel electrolytes. Additionally, there is a concerted emphasis on improving the electrochemical performance of semi-solid-state ZIBs. Moreover, some studies have delved into self-healing and adhesive properties, anti-freezing characteristics, and the multifunctionality of hydrogels. This review paper concludes with perspectives on potential future research directions.

Suggested Citation

  • Veerle Vandeginste & Junru Wang, 2024. "A Review of the Synthesis of Biopolymer Hydrogel Electrolytes for Improved Electrode–Electrolyte Interfaces in Zinc-Ion Batteries," Energies, MDPI, vol. 17(2), pages 1-34, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:310-:d:1315114
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/310/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng-Chang Lin & Ming Gong & Bingan Lu & Yingpeng Wu & Di-Yan Wang & Mingyun Guan & Michael Angell & Changxin Chen & Jiang Yang & Bing-Joe Hwang & Hongjie Dai, 2015. "An ultrafast rechargeable aluminium-ion battery," Nature, Nature, vol. 520(7547), pages 324-328, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin-Hao Chen & Chen-Hsiang Hsieh & Li-Tao Teng & Chien-Chung Huang, 2023. "Experimental Study on Temperature Sensitivity of the State of Charge of Aluminum Battery Storage System," Energies, MDPI, vol. 16(11), pages 1-30, May.
    2. Eric L. Prentis, 2016. "Reconstructing Renewable Energy: Making Wind and Solar Power Dispatchable, Reliable and Efficient," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 128-133.
    3. Wei, Manhui & Wang, Keliang & Pei, Pucheng & Zuo, Yayu & Zhong, Liping & Shang, Nuo & Wang, Hengwei & Chen, Junfeng & Zhang, Pengfei & Chen, Zhuo, 2022. "An enhanced-performance Al-air battery optimizing the alkaline electrolyte with a strong Lewis acid ZnCl2," Applied Energy, Elsevier, vol. 324(C).
    4. Craig, Ben & Schoetz, Theresa & Cruden, Andrew & Ponce de Leon, Carlos, 2020. "Review of current progress in non-aqueous aluminium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Saswati Sarmah & Lakhanlal & Biraj Kumar Kakati & Dhanapati Deka, 2023. "Recent advancement in rechargeable battery technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    6. Mali, Vima & Saxena, Rajat & Kumar, Kundan & Kalam, Abul & Tripathi, Brijesh, 2021. "Review on battery thermal management systems for energy-efficient electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Jiashen Meng & Xuhui Yao & Xufeng Hong & Lujun Zhu & Zhitong Xiao & Yongfeng Jia & Fang Liu & Huimin Song & Yunlong Zhao & Quanquan Pang, 2023. "A solution-to-solid conversion chemistry enables ultrafast-charging and long-lived molten salt aluminium batteries," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    9. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    11. Gutiérrez-Arnillas, Esther & Álvarez, María S. & Deive, Francisco J. & Rodríguez, Ana & Sanromán, M. Ángeles, 2016. "New horizons in the enzymatic production of biodiesel using neoteric solvents," Renewable Energy, Elsevier, vol. 98(C), pages 92-100.
    12. Shuo Jin & Jiefu Yin & Xiaosi Gao & Arpita Sharma & Pengyu Chen & Shifeng Hong & Qing Zhao & Jingxu Zheng & Yue Deng & Yong Lak Joo & Lynden A. Archer, 2022. "Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Mao-Chia Huang & Cheng-Hsien Yang & Chien-Chih Chiang & Sheng-Cheng Chiu & Yun-Feng Chen & Cong-You Lin & Lu-Yu Wang & Yen-Liang Li & Chang-Chung Yang & Wen-Sheng Chang, 2018. "Influence of High Loading on the Performance of Natural Graphite-Based Al Secondary Batteries," Energies, MDPI, vol. 11(10), pages 1-12, October.
    14. Jiashen Meng & Xufeng Hong & Zhitong Xiao & Linhan Xu & Lujun Zhu & Yongfeng Jia & Fang Liu & Liqiang Mai & Quanquan Pang, 2024. "Rapid-charging aluminium-sulfur batteries operated at 85 °C with a quaternary molten salt electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Davood Sabaghi & Zhiyong Wang & Preeti Bhauriyal & Qiongqiong Lu & Ahiud Morag & Daria Mikhailovia & Payam Hashemi & Dongqi Li & Christof Neumann & Zhongquan Liao & Anna Maria Dominic & Ali Shaygan Ni, 2023. "Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Sunil Dutt & Ashwani Kumar & Shivendra Singh, 2023. "Synthesis of Metal Organic Frameworks (MOFs) and Their Derived Materials for Energy Storage Applications," Clean Technol., MDPI, vol. 5(1), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:310-:d:1315114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.