IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6022-d1533343.html
   My bibliography  Save this article

Co-Optimization of Speed Planning and Energy Management for Plug-In Hybrid Electric Trucks Passing Through Traffic Light Intersections

Author

Listed:
  • Xin Liu

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Guojing Shi

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Changbo Yang

    (Dongfeng Liuzhou Motor Co., Ltd., Liuzhou 545005, China)

  • Enyong Xu

    (Dongfeng Liuzhou Motor Co., Ltd., Liuzhou 545005, China)

  • Yanmei Meng

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China)

Abstract

To tackle the energy-saving optimization issue of plug-in hybrid electric trucks traversing multiple traffic light intersections continuously, this paper presents a double-layer energy management strategy that utilizes the dynamic programming–twin delayed deep deterministic policy gradient (DP-TD3) algorithm to synergistically optimize the speed planning and energy management of plug-in hybrid electric trucks, thereby enhancing the vehicle’s passability through traffic light intersections and fuel economy. In the upper layer, the dynamic programming (DP) algorithm is employed to create a speed-planning model. This model effectively converts the nonlinear constraints related to the position, phase, and timing information of each traffic signal on the road into time-varying constraints, thereby improving computational efficiency. In the lower layer, an energy management model is constructed using the twin delayed deep deterministic policy gradient (TD3) algorithm to achieve optimal allocation of demanded power through the interaction of the TD3 agent with the truck environment. The model’s validity is confirmed through testing on a hardware-in-the-loop test machine, followed by simulation experiments. The results demonstrate that the DP-TD3 method proposed in this paper effectively enhances fuel economy, achieving an average fuel saving of 14.61% compared to the dynamic programming–charge depletion/charge sustenance (DP-CD/CS) method.

Suggested Citation

  • Xin Liu & Guojing Shi & Changbo Yang & Enyong Xu & Yanmei Meng, 2024. "Co-Optimization of Speed Planning and Energy Management for Plug-In Hybrid Electric Trucks Passing Through Traffic Light Intersections," Energies, MDPI, vol. 17(23), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6022-:d:1533343
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6022/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6022/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiong, Rui & Cao, Jiayi & Yu, Quanqing, 2018. "Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 211(C), pages 538-548.
    2. Xiaoping Li & Junming Zhou & Wei Guan & Feng Jiang & Guangming Xie & Chunfeng Wang & Weiguang Zheng & Zhijie Fang, 2023. "Optimization of Brake Feedback Efficiency for Small Pure Electric Vehicles Based on Multiple Constraints," Energies, MDPI, vol. 16(18), pages 1-20, September.
    3. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).
    4. Qi, Chunyang & Song, Chuanxue & Xiao, Feng & Song, Shixin, 2022. "Generalization ability of hybrid electric vehicle energy management strategy based on reinforcement learning method," Energy, Elsevier, vol. 250(C).
    5. Qi, Chunyang & Zhu, Yiwen & Song, Chuanxue & Yan, Guangfu & Xiao, Feng & Da wang, & Zhang, Xu & Cao, Jingwei & Song, Shixin, 2022. "Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle," Energy, Elsevier, vol. 238(PA).
    6. Li, Jie & Fotouhi, Abbas & Pan, Wenjun & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2023. "Deep reinforcement learning-based eco-driving control for connected electric vehicles at signalized intersections considering traffic uncertainties," Energy, Elsevier, vol. 279(C).
    7. Huang, Ruchen & He, Hongwen & Zhao, Xuyang & Wang, Yunlong & Li, Menglin, 2022. "Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm," Applied Energy, Elsevier, vol. 321(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawei Zhong & Bolan Liu & Liang Liu & Wenhao Fan & Jingxian Tang, 2025. "Artificial Intelligence Algorithms for Hybrid Electric Powertrain System Control: A Review," Energies, MDPI, vol. 18(8), pages 1-30, April.
    2. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    3. Xiaodong Liu & Hongqiang Guo & Xingqun Cheng & Juan Du & Jian Ma, 2022. "A Robust Design of the Model-Free-Adaptive-Control-Based Energy Management for Plug-In Hybrid Electric Vehicle," Energies, MDPI, vol. 15(20), pages 1-24, October.
    4. Tang, Tianfeng & Peng, Qianlong & Shi, Qing & Peng, Qingguo & Zhao, Jin & Chen, Chaoyi & Wang, Guangwei, 2024. "Energy management of fuel cell hybrid electric bus in mountainous regions: A deep reinforcement learning approach considering terrain characteristics," Energy, Elsevier, vol. 311(C).
    5. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    6. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    7. Zhou, Jianhao & Xue, Yuan & Xu, Da & Li, Chaoxiong & Zhao, Wanzhong, 2022. "Self-learning energy management strategy for hybrid electric vehicle via curiosity-inspired asynchronous deep reinforcement learning," Energy, Elsevier, vol. 242(C).
    8. Yu, Jin & Song, Yurun & Zhang, Huasen & Dong, Xiaohan, 2022. "Novel design of compound coupled hydro-mechanical transmission on heavy-duty vehicle for energy recycling," Energy, Elsevier, vol. 239(PD).
    9. Wenna Xu & Hao Huang & Chun Wang & Shuai Xia & Xinmei Gao, 2025. "A Comparative Study of Energy Management Strategies for Battery-Ultracapacitor Electric Vehicles Based on Different Deep Reinforcement Learning Methods," Energies, MDPI, vol. 18(5), pages 1-18, March.
    10. Zhou, Yujie & Huang, Yin & Mao, Xuping & Kang, Zehao & Huang, Xuejin & Xuan, Dongji, 2024. "Research on energy management strategy of fuel cell hybrid power via an improved TD3 deep reinforcement learning," Energy, Elsevier, vol. 293(C).
    11. Wei, Zhengchao & Ma, Yue & Yang, Ningkang & Ruan, Shumin & Xiang, Changle, 2023. "Reinforcement learning based power management integrating economic rotational speed of turboshaft engine and safety constraints of battery for hybrid electric power system," Energy, Elsevier, vol. 263(PB).
    12. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    13. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    14. Dai, Churong & Zuo, Wei & Li, Qingqing & Zhou, Kun & Huang, Yuhan & Zhang, Guangde & E, Jiaqiang, 2024. "Energy conversion efficiency improvement studies on the hydrogen-fueled micro planar combustor with multi-baffles for thermophotovoltaic applications," Energy, Elsevier, vol. 313(C).
    15. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    16. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
    17. Xiaohan Fang & Jinkuan Wang & Guanru Song & Yinghua Han & Qiang Zhao & Zhiao Cao, 2019. "Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling," Energies, MDPI, vol. 13(1), pages 1-26, December.
    18. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    19. Fang, Shuo & Hu, Shuangxi & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2025. "Power management unit with maximum-efficiency-point-tracking to enhance the efficiency of micro DMFC stack," Energy, Elsevier, vol. 315(C).
    20. Aijuan Li & Wanzhong Zhao & Xibo Wang & Xuyun Qiu, 2018. "ACT-R Cognitive Model Based Trajectory Planning Method Study for Electric Vehicle’s Active Obstacle Avoidance System," Energies, MDPI, vol. 11(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6022-:d:1533343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.