IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5482-d1512424.html
   My bibliography  Save this article

Remaining Service Life Prediction of Lithium-Ion Batteries Based on Randomly Perturbed Traceless Particle Filtering

Author

Listed:
  • Yan Liu

    (College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Jun Chen

    (College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Jun Yong

    (Jun Yong-State Grid Dangtu County Power Supply Company, Maanshan 243000, China)

  • Cheng Yang

    (State Key Laboratory of Space Power-Sources, Shanghai Institute of Space Power-Sources, Shanghai 200245, China)

  • Liqin Yan

    (State Key Laboratory of Space Power-Sources, Shanghai Institute of Space Power-Sources, Shanghai 200245, China)

  • Yanping Zheng

    (College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

Abstract

To address the limitations in the prediction accuracy of the remaining useful life (RUL) of lithium-ion batteries, stemming from model accuracy, particle degradation, and insufficient diversity in the particle filter (PF) algorithm, this paper proposes a battery RUL prediction method utilizing a randomly perturbed unscented particle filter (RP-UPF) algorithm, based on the constructed battery capacity degradation model. The method utilizes evaluation metrics adjusted R-squared ( R adj 2 ) and the Akaike Information Criterion ( AIC ) to select the battery capacity decline model C 5 with a higher goodness of fit. The initial values for constructing the C 5 model are obtained using the relevance vector machine (RVM) and nonlinear least squares methods. Based on the constructed battery capacity decline model C 5 , the RP-UPF algorithm is employed to estimate the posterior parameters and iteratively approach the true battery capacity decline curve, thereby predicting the battery’s RUL. The research results indicate that, using battery B0005 as an example and starting the prediction from the 50th cycle, the RUL prediction results obtained with the RP-UPF algorithm demonstrate reductions in absolute error, relative error, and probability density function (PDF) width of 2%, 2.71%, and 10%, respectively, compared to the PF algorithm. Similar conclusions were drawn for batteries B0006 and B0018. Under the constructed battery capacity degradation model C 5 , the RP-UPF algorithm shows higher prediction accuracy for battery RUL and a narrower PDF range compared to the PF algorithm. This approach effectively addresses the issue of particle weight degradation in the PF algorithm, providing a more valuable reference for battery RUL prediction.

Suggested Citation

  • Yan Liu & Jun Chen & Jun Yong & Cheng Yang & Liqin Yan & Yanping Zheng, 2024. "Remaining Service Life Prediction of Lithium-Ion Batteries Based on Randomly Perturbed Traceless Particle Filtering," Energies, MDPI, vol. 17(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5482-:d:1512424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5482/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5482/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    2. He, HongWen & Zhang, YongZhi & Xiong, Rui & Wang, Chun, 2015. "A novel Gaussian model based battery state estimation approach: State-of-Energy," Applied Energy, Elsevier, vol. 151(C), pages 41-48.
    3. Hong, Joonki & Lee, Dongheon & Jeong, Eui-Rim & Yi, Yung, 2020. "Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning," Applied Energy, Elsevier, vol. 278(C).
    4. Ju, Fei & Du, Wei & Zhuang, Weichao & Li, Bingbing & Wang, Tao & Wang, Weiwei & Ma, Huijie, 2024. "Profit-effective component sizing for electric delivery trucks with dual motor coupling powertrain," Energy, Elsevier, vol. 296(C).
    5. Jiahui Zhao & Yong Zhu & Bin Zhang & Mingyi Liu & Jianxing Wang & Chenghao Liu & Xiaowei Hao, 2023. "Review of State Estimation and Remaining Useful Life Prediction Methods for Lithium–Ion Batteries," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    6. Shen, Yanqing, 2014. "Hybrid unscented particle filter based state-of-charge determination for lead-acid batteries," Energy, Elsevier, vol. 74(C), pages 795-803.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qingbo & Lu, Taolin & Lai, Chunyan & Li, Jiwei & Pan, Long & Ma, Changjun & Zhu, Yunpeng & Xie, Jingying, 2024. "Lithium-ion battery capacity estimation based on fragment charging data using deep residual shrinkage networks and uncertainty evaluation," Energy, Elsevier, vol. 290(C).
    2. Wang, Cong & Chen, Yunxia & Zhang, Qingyuan & Zhu, Jiaxiao, 2023. "Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering," Applied Energy, Elsevier, vol. 336(C).
    3. Ding, Pan & Liu, Xiaojuan & Li, Huiqin & Huang, Zequan & Zhang, Ke & Shao, Long & Abedinia, Oveis, 2021. "Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Li, Chuan & Zhang, Huahua & Ding, Ping & Yang, Shuai & Bai, Yun, 2023. "Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Zhao, Guangcai & Kang, Yongzhe & Huang, Peng & Duan, Bin & Zhang, Chenghui, 2023. "Battery health prognostic using efficient and robust aging trajectory matching with ensemble deep transfer learning," Energy, Elsevier, vol. 282(C).
    6. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Hou, Jing & Su, Taian & Gao, Tian & Yang, Yan & Xue, Wei, 2025. "Early prediction of battery lifetime for lithium-ion batteries based on a hybrid clustered CNN model," Energy, Elsevier, vol. 319(C).
    8. Sohn, Suyeon & Byun, Ha-Eun & Lee, Jay H., 2022. "Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation," Applied Energy, Elsevier, vol. 328(C).
    9. Chunxiang Zhu & Zhiwei He & Zhengyi Bao & Changcheng Sun & Mingyu Gao, 2023. "Prognosis of Lithium-Ion Batteries’ Remaining Useful Life Based on a Sequence-to-Sequence Model with Variational Mode Decomposition," Energies, MDPI, vol. 16(2), pages 1-16, January.
    10. Yue Ren & Chunhua Jin & Shu Fang & Li Yang & Zixuan Wu & Ziyang Wang & Rui Peng & Kaiye Gao, 2023. "A Comprehensive Review of Key Technologies for Enhancing the Reliability of Lithium-Ion Power Batteries," Energies, MDPI, vol. 16(17), pages 1-38, August.
    11. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    12. Ibraheem, Rasheed & Dechent, Philipp & dos Reis, Gonçalo, 2025. "Path signature-based life prognostics of Li-ion battery using pulse test data," Applied Energy, Elsevier, vol. 378(PA).
    13. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    14. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    15. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    16. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    17. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
    18. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    19. Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
    20. Zhao, Bo & Zhang, Weige & Zhang, Yanru & Zhang, Caiping & Zhang, Chi & Zhang, Junwei, 2024. "Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning," Applied Energy, Elsevier, vol. 358(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5482-:d:1512424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.