IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4810-d1485922.html
   My bibliography  Save this article

Research on Anomaly Detection Model for Power Consumption Data Based on Time-Series Reconstruction

Author

Listed:
  • Zhenghui Mao

    (Longquan Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd., Longquan 323799, China)

  • Bijun Zhou

    (Longquan Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd., Longquan 323799, China)

  • Jiaxuan Huang

    (Longquan Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd., Longquan 323799, China)

  • Dandan Liu

    (School of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Qiangqiang Yang

    (School of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

Abstract

The power consumption data in buildings can be viewed as a time series, where outliers indicate unreasonable energy usage patterns. Accurately detecting these outliers and improving energy management methods based on the findings can lead to energy savings. To detect outliers, an anomaly detection model based on time-series reconstruction, AF-GS-RandomForest, is proposed. This model comprises two modules: prediction and detection. The prediction module uses the Autoformer algorithm to build an accurate and robust predictive model for unstable nonlinear sequences, and calculates the model residuals based on the prediction results. Points with large residuals are considered outliers, as they significantly differ from the normal pattern. The detection module employs a random forest algorithm optimized by grid search to detect residuals and ultimately identify outliers. The algorithm’s accuracy and robustness were tested on public datasets, and it was applied to a power consumption dataset of an office building. Compared with commonly used algorithms, the proposed algorithm improved precision by 2.2%, recall by 12.1%, and F1 score by 7.7%, outperforming conventional anomaly detection algorithms.

Suggested Citation

  • Zhenghui Mao & Bijun Zhou & Jiaxuan Huang & Dandan Liu & Qiangqiang Yang, 2024. "Research on Anomaly Detection Model for Power Consumption Data Based on Time-Series Reconstruction," Energies, MDPI, vol. 17(19), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4810-:d:1485922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4810/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4810/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    2. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    3. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
    4. Roberto Morcillo-Jimenez & Karel Gutiérrez-Batista & Juan Gómez-Romero, 2023. "TSxtend: A Tool for Batch Analysis of Temporal Sensor Data," Energies, MDPI, vol. 16(4), pages 1-29, February.
    5. Rodrigo Moreira & Larissa Ferreira Rodrigues Moreira & Flávio Oliveira Silva, 2025. "Brazilian Selic Rate Forecasting with Deep Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 65(3), pages 1319-1339, March.
    6. Duan, Tianyao & Guo, Huan & Qi, Xiao & Sun, Ming & Forrest, Jeffrey, 2024. "A novel information enhanced Grey Lotka–Volterra model driven by system mechanism and data for energy forecasting of WEET project in China," Energy, Elsevier, vol. 304(C).
    7. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Kostadin Yotov & Emil Hadzhikolev & Stanka Hadzhikoleva & Stoyan Cheresharov, 2022. "Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
    9. Vasileios Laitsos & Georgios Vontzos & Paschalis Paraschoudis & Eleftherios Tsampasis & Dimitrios Bargiotas & Lefteri H. Tsoukalas, 2024. "The State of the Art Electricity Load and Price Forecasting for the Modern Wholesale Electricity Market," Energies, MDPI, vol. 17(22), pages 1-37, November.
    10. Latifa A. Yousef & Hibba Yousef & Lisandra Rocha-Meneses, 2023. "Artificial Intelligence for Management of Variable Renewable Energy Systems: A Review of Current Status and Future Directions," Energies, MDPI, vol. 16(24), pages 1-27, December.
    11. Chlebus Marcin & Dyczko Michał & Woźniak Michał, 2021. "Nvidia's Stock Returns Prediction Using Machine Learning Techniques for Time Series Forecasting Problem," Central European Economic Journal, Sciendo, vol. 8(55), pages 44-62, January.
    12. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
    13. Gilani, Mohammad Amin & Kazemi, Ahad & Ghasemi, Mostafa, 2020. "Distribution system resilience enhancement by microgrid formation considering distributed energy resources," Energy, Elsevier, vol. 191(C).
    14. Hamza Mubarak & Mohammad J. Sanjari & Sascha Stegen & Abdallah Abdellatif, 2023. "Improved Active and Reactive Energy Forecasting Using a Stacking Ensemble Approach: Steel Industry Case Study," Energies, MDPI, vol. 16(21), pages 1-32, October.
    15. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    16. Kamran Hassanpouri Baesmat & Zeinab Farrokhi & Grzegorz Chmaj & Emma E. Regentova, 2025. "Parallel Multi-Model Energy Demand Forecasting with Cloud Redundancy: Leveraging Trend Correction, Feature Selection, and Machine Learning," Forecasting, MDPI, vol. 7(2), pages 1-18, May.
    17. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    18. Sun, Yuanyuan & Xie, Xiangmin & Wang, Qingyan & Zhang, Linghan & Li, Yahui & Jin, Zongshuai, 2020. "A bottom-up approach to evaluate the harmonics and power of home appliances in residential areas," Applied Energy, Elsevier, vol. 259(C).
    19. Ibrahim Ali Kachalla & Christian Ghiaus, 2024. "Electric Water Boiler Energy Prediction: State-of-the-Art Review of Influencing Factors, Techniques, and Future Directions," Energies, MDPI, vol. 17(2), pages 1-32, January.
    20. Ragosebo Kgaugelo Modise & Khumbulani Mpofu & Tshifhiwa Nenzhelele & Olukorede Tijani Adenuga, 2025. "Enhancing Energy Consumption in Automotive Component Manufacturing: A Hybrid Autoregressive Integrated Moving Average–Long Short-Term Memory Prediction Model," Sustainability, MDPI, vol. 17(4), pages 1-19, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4810-:d:1485922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.