IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4303-d1466002.html
   My bibliography  Save this article

Non-Intrusive Load Monitoring Based on Dimensionality Reduction and Adapted Spatial Clustering

Author

Listed:
  • Xu Zhang

    (Marketing Service Center of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 311152, China)

  • Jun Zhou

    (Marketing Service Center of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 311152, China)

  • Chunguang Lu

    (Marketing Service Center of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 311152, China)

  • Lei Song

    (Marketing Service Center of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 311152, China)

  • Fanyu Meng

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Xianbo Wang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

Non-invasive load monitoring (NILM) deduces changes in energy consumption patterns and operational statuses of electrical equipment from power signals in the feed line. With the emergence of fine-grained power load distribution, the importance of utilizing this technology for implementing demand-side energy management in smart grid development has become increasingly prominent. To address the issue of low load identification accuracy stemming from complex and diverse load types, this paper introduces a NILM method based on uniform manifold approximation and projection (UMAP) reduction and enhanced density-based spatial clustering of applications with noise (DBSCAN). Firstly, this paper combines the characteristics of user load under transient and steady-state conditions and selects data with significant differences to construct a load-characteristic database. Additionally, UMAP is employed to reduce the dimensionality of high-dimensional load features and rebuild a load feature database. Subsequently, DBSCAN is utilized to categorize typical user loads, followed by a correlation analysis with the load-characteristic database to determine the types or classes of loads that involve switching actions. Finally, this paper simulates and analyzes the proposed method using the electricity consumption data of industrial users from the CER–Electricity–Data dataset. It identifies the electricity load data commonly utilized by users in a specific area of Zhejiang Province in China. The experimental results indicate that the accuracy of the proposed non-invasive load identification method reaches 95%. Compared to the wavelet transform, decision tree, and backpropagation network methods, the improvement is approximately 5%.

Suggested Citation

  • Xu Zhang & Jun Zhou & Chunguang Lu & Lei Song & Fanyu Meng & Xianbo Wang, 2024. "Non-Intrusive Load Monitoring Based on Dimensionality Reduction and Adapted Spatial Clustering," Energies, MDPI, vol. 17(17), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4303-:d:1466002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Dongran & Fan, Xinyu & Yang, Jian & Liu, Anfeng & Chen, Sifan & Joo, Young Hoon, 2018. "Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method," Applied Energy, Elsevier, vol. 224(C), pages 267-279.
    2. Arora, Siddharth & Taylor, James W., 2016. "Forecasting electricity smart meter data using conditional kernel density estimation," Omega, Elsevier, vol. 59(PA), pages 47-59.
    3. Tao, Tao & Liu, Yongqian & Qiao, Yanhui & Gao, Linyue & Lu, Jiaoyang & Zhang, Ce & Wang, Yu, 2021. "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 1004-1013.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    2. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    3. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    4. Aouicha, Lamia & Messaci, Fatiha, 2019. "Kernel estimation of the conditional density under a censorship model," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 173-180.
    5. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    6. Jonathan Roth & Jayashree Chadalawada & Rishee K. Jain & Clayton Miller, 2021. "Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification," Energies, MDPI, vol. 14(5), pages 1-22, March.
    7. van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
    8. Weiliang Lu & Alexis Arrigoni & Anatoliy Swishchuk & Stéphane Goutte, 2021. "Modelling of Fuel- and Energy-Switching Prices by Mean-Reverting Processes and Their Applications to Alberta Energy Markets," Mathematics, MDPI, vol. 9(7), pages 1-24, March.
    9. Antonio E. Saldaña-González & Andreas Sumper & Mònica Aragüés-Peñalba & Miha Smolnikar, 2020. "Advanced Distribution Measurement Technologies and Data Applications for Smart Grids: A Review," Energies, MDPI, vol. 13(14), pages 1-34, July.
    10. Devine, Mel T. & Bertsch, Valentin, 2018. "Examining the benefits of load shedding strategies using a rolling-horizon stochastic mixed complementarity equilibrium model," European Journal of Operational Research, Elsevier, vol. 267(2), pages 643-658.
    11. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    12. Tu, Yu & Chen, Yaoran & Zhang, Kai & He, Ruiyang & Han, Zhaolong & Zhou, Dai, 2025. "A multi-fidelity framework for power prediction of wind farm under yaw misalignment," Applied Energy, Elsevier, vol. 377(PC).
    13. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    14. Yang, Yandong & Hong, Weijun & Li, Shufang, 2019. "Deep ensemble learning based probabilistic load forecasting in smart grids," Energy, Elsevier, vol. 189(C).
    15. Li, Chaofan & Song, Yajing & Xu, Long & Zhao, Ning & Wang, Fan & Fang, Lide & Li, Xiaoting, 2022. "Prediction of the interfacial disturbance wave velocity in vertical upward gas-liquid annular flow via ensemble learning," Energy, Elsevier, vol. 242(C).
    16. Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2017. "Coherent Probabilistic Forecasts for Hierarchical Time Series," Monash Econometrics and Business Statistics Working Papers 3/17, Monash University, Department of Econometrics and Business Statistics.
    17. Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
    18. Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2019. "Numerical Investigation of the Effect of Tower Dam and Rotor Misalignment on Performance and Loads of a Large Wind Turbine in the Atmospheric Boundary Layer," Energies, MDPI, vol. 12(7), pages 1-19, March.
    19. Davide Astolfi & Francesco Castellani & Matteo Becchetti & Andrea Lombardi & Ludovico Terzi, 2020. "Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting It and Assessing Its Performance Impact," Energies, MDPI, vol. 13(9), pages 1-17, May.
    20. Alexis Gerossier & Robin Girard & Alexis Bocquet & George Kariniotakis, 2018. "Robust Day-Ahead Forecasting of Household Electricity Demand and Operational Challenges," Energies, MDPI, vol. 11(12), pages 1-18, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4303-:d:1466002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.