IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p3927-d1452430.html
   My bibliography  Save this article

Enhancing Cyber-Physical Resiliency of Microgrid Control under Denial-of-Service Attack with Digital Twins

Author

Listed:
  • Mahmoud S. Abdelrahman

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Ibtissam Kharchouf

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Hossam M. Hussein

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Mustafa Esoofally

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Osama A. Mohammed

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

Abstract

Microgrids (MGs) are the new paradigm of decentralized networks of renewable energy sources, loads, and storage devices that can operate independently or in coordination with the primary grid, incorporating significant flexibility and supply reliability. To increase reliability, traditional individual MGs can be replaced by networked microgrids (NMGs), which are more dependable. However, when it comes to operation and control, they also pose challenges for cyber security and communication reliability. Denial of service (DoS) is a common danger to DC microgrids with advanced controllers that rely on active information exchanges and has been recorded as the most frequent cause of cyber incidents. It can disrupt data transmission, leading to ineffective control and system instability. This paper proposes digital twin (DT) technology as an integrated solution, with new, advanced analytics technology using machine learning and artificial intelligence to provide simulation capabilities to predict and estimate future states. By twinning the cyber-physical dynamics of NMGs using data-driven models, DoS attacks targeting cyber-layer agents will be detected and mitigated. A long short-term memory (LSTM) model data-driven digital twin approach for DoS attack detection and mitigation is implemented, tested, and evaluated.

Suggested Citation

  • Mahmoud S. Abdelrahman & Ibtissam Kharchouf & Hossam M. Hussein & Mustafa Esoofally & Osama A. Mohammed, 2024. "Enhancing Cyber-Physical Resiliency of Microgrid Control under Denial-of-Service Attack with Digital Twins," Energies, MDPI, vol. 17(16), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3927-:d:1452430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/3927/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/3927/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saad, Ahmed A. & Faddel, Samy & Mohammed, Osama, 2019. "A secured distributed control system for future interconnected smart grids," Applied Energy, Elsevier, vol. 243(C), pages 57-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Shixing & Gu, Wei & Lu, Shuai & Yu, Ruizhi & Sheng, Lina, 2022. "Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism," Applied Energy, Elsevier, vol. 311(C).
    2. Du, Dajun & Zhu, Minggao & Wu, Dakui & Li, Xue & Fei, Minrui & Hu, Yukun & Li, Kang, 2024. "Distributed security state estimation-based carbon emissions and economic cost analysis for cyber–physical power systems under hybrid attacks," Applied Energy, Elsevier, vol. 353(PA).
    3. Chen, Chunyu & Cui, Mingjian & Fang, Xin & Ren, Bixing & Chen, Yang, 2020. "Load altering attack-tolerant defense strategy for load frequency control system," Applied Energy, Elsevier, vol. 280(C).
    4. Yu, Hang & Shang, Yitong & Niu, Songyan & Cheng, Chong & Shao, Ziyun & Jian, Linni, 2022. "Towards energy-efficient and cost-effective DC nanaogrid: A novel pseudo hierarchical architecture incorporating V2G technology for both autonomous coordination and regulated power dispatching," Applied Energy, Elsevier, vol. 313(C).
    5. Matthew Boeding & Kelly Boswell & Michael Hempel & Hamid Sharif & Juan Lopez & Kalyan Perumalla, 2022. "Survey of Cybersecurity Governance, Threats, and Countermeasures for the Power Grid," Energies, MDPI, vol. 15(22), pages 1-22, November.
    6. Wang, Y.X. & Chen, J.J. & Zhao, Y.L. & Xu, B.Y., 2024. "Incorporate robust optimization and demand defense for optimal planning of shared rental energy storage in multi-user industrial park," Energy, Elsevier, vol. 301(C).
    7. Ma, Shuyang & Li, Yan & Du, Liang & Wu, Jianzhong & Zhou, Yue & Zhang, Yichen & Xu, Tao, 2022. "Programmable intrusion detection for distributed energy resources in cyber–physical networked microgrids," Applied Energy, Elsevier, vol. 306(PB).
    8. Nikolay Vikhorev & Andrey Kurkin & Dmitriy Aleshin & Danil Ulyanov & Maksim Konstantinov & Andrey Shalukho, 2023. "Battery Dynamic Balancing Method Based on Calculation of Cell Voltage Reference Value," Energies, MDPI, vol. 16(9), pages 1-17, April.
    9. Ahmed H. Okilly & Namhun Kim & Jonghyuk Lee & Yegu Kang & Jeihoon Baek, 2023. "Development of a Smart Static Transfer Switch Based on a Triac Semiconductor for AC Power Switching Control," Energies, MDPI, vol. 16(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3927-:d:1452430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.