IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p3910-d1452063.html
   My bibliography  Save this article

A Bi-Level Reactive Power Optimization for Wind Clusters Integrating the Power Grid While Considering the Reactive Capability

Author

Listed:
  • Xiping Ma

    (Electric Power Research Institute, State Grid Gansu Electric Power Company, Lanzhou 730070, China)

  • Wenxi Zhen

    (Electric Power Research Institute, State Grid Gansu Electric Power Company, Lanzhou 730070, China)

  • Rui Xu

    (Electric Power Research Institute, State Grid Gansu Electric Power Company, Lanzhou 730070, China)

  • Xiaoyang Dong

    (Electric Power Research Institute, State Grid Gansu Electric Power Company, Lanzhou 730070, China)

  • Yaxin Li

    (Electric Power Research Institute, State Grid Gansu Electric Power Company, Lanzhou 730070, China)

Abstract

With the integration of large-scale wind power clusters into the power system, wind farms play a crucial role in grid reactive power regulation. However, the range of its reactive power remains uncertain, posing challenges in formulating a viable program for regulating reactive power to ensure the safe and cost-effective operation of the power system. Based on this, this paper develops a bi-level reactive power optimization for wind clusters integrating the power grid while considering the reactive capability. Firstly, this paper carries out a refined analysis of the wind power clusters, taking into account the characteristics of different areas to estimate the exact value of the reactive power capability in wind power clusters. Secondly, a bi-level reactive power optimization model is established. The upper-layer optimization aims to minimize active losses and voltage deviation in power system operation, while the lower-layer optimization focuses on maximizing reactive power margin utilization in wind farms. To solve this bi-level optimization model, an improved artificial fish swarm algorithm (AFSA) is employed, which decouples real variables and integer variables to enhance the optimization ability of the algorithm. Finally, the effectiveness of our proposed optimization strategy and algorithm is validated through the simulation results.

Suggested Citation

  • Xiping Ma & Wenxi Zhen & Rui Xu & Xiaoyang Dong & Yaxin Li, 2024. "A Bi-Level Reactive Power Optimization for Wind Clusters Integrating the Power Grid While Considering the Reactive Capability," Energies, MDPI, vol. 17(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3910-:d:1452063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/3910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/3910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghasemi, Mojtaba & Aghaei, Jamshid & Akbari, Ebrahim & Ghavidel, Sahand & Li, Li, 2016. "A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems," Energy, Elsevier, vol. 107(C), pages 182-195.
    2. Jin, Haowei & Guo, Jue & Tang, Lei & Du, Pei, 2024. "Long-term electricity demand forecasting under low-carbon energy transition: Based on the bidirectional feedback between power demand and generation mix," Energy, Elsevier, vol. 286(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaobing Yu & Xianrui Yu & Yiqun Lu & Jichuan Sheng, 2018. "Economic and Emission Dispatch Using Ensemble Multi-Objective Differential Evolution Algorithm," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    2. Basu, M., 2023. "Multi-county combined heat and power dynamic economic emission dispatch incorporating electric vehicle parking lot," Energy, Elsevier, vol. 275(C).
    3. Carlos Benavides & Sebastián Gwinner & Andrés Ulloa & José Barrales-Ruiz & Vicente Sepúlveda & Manuel Díaz, 2024. "Bus Basis Model Applied to the Chilean Power System: A Detailed Look at Chilean Electric Demand," Energies, MDPI, vol. 17(14), pages 1-28, July.
    4. Iman Ahmadianfar & Saeed Noshadian & Nadir Ahmed Elagib & Meysam Salarijazi, 2021. "Robust Diversity-based Sine-Cosine Algorithm for Optimizing Hydropower Multi-reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3513-3538, September.
    5. Hossein Lotfi, 2022. "A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    6. Ho-Sung Ryu & Mun-Kyeom Kim, 2020. "Combined Economic Emission Dispatch with Environment-Based Demand Response Using WU-ABC Algorithm," Energies, MDPI, vol. 13(23), pages 1-20, December.
    7. Chen, Xu & Tang, Guowei, 2022. "Solving static and dynamic multi-area economic dispatch problems using an improved competitive swarm optimization algorithm," Energy, Elsevier, vol. 238(PC).
    8. Li, Y.Z. & Li, K.C. & Wang, P. & Liu, Y. & Lin, X.N. & Gooi, H.B. & Li, G.F. & Cai, D.L. & Luo, Y., 2017. "Risk constrained economic dispatch with integration of wind power by multi-objective optimization approach," Energy, Elsevier, vol. 126(C), pages 810-820.
    9. Sharifian, Yeganeh & Abdi, Hamdi, 2023. "Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm," Energy, Elsevier, vol. 267(C).
    10. Lin, Chenhao & Liang, Huijun & Pang, Aokang, 2023. "A fast data-driven optimization method of multi-area combined economic emission dispatch," Applied Energy, Elsevier, vol. 337(C).
    11. Narimani, Hossein & Razavi, Seyed-Ehsan & Azizivahed, Ali & Naderi, Ehsan & Fathi, Mehdi & Ataei, Mohammad H. & Narimani, Mohammad Rasoul, 2018. "A multi-objective framework for multi-area economic emission dispatch," Energy, Elsevier, vol. 154(C), pages 126-142.
    12. Roy, Sanjoy, 2020. "A technical perspective on variability costs: Dependence on power variability and cross-correlations," Energy, Elsevier, vol. 198(C).
    13. Sharifian, Yeganeh & Abdi, Hamdi, 2024. "Multi-area economic dispatch problem: Methods, uncertainties, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    14. Meng, Anbo & Xu, Xuancong & Zhang, Zhan & Zeng, Cong & Liang, Ruduo & Zhang, Zheng & Wang, Xiaolin & Yan, Baiping & Yin, Hao & Luo, Jianqiang, 2022. "Solving high-dimensional multi-area economic dispatch problem by decoupled distributed crisscross optimization algorithm with population cross generation strategy," Energy, Elsevier, vol. 258(C).
    15. Wei, Hui & Wang, Wen-sheng & Kao, Xiao-xuan, 2023. "A novel approach to hybrid dynamic environmental-economic dispatch of multi-energy complementary virtual power plant considering renewable energy generation uncertainty and demand response," Renewable Energy, Elsevier, vol. 219(P1).
    16. Arsalan Masood & Ubaid Ahmed & Syed Zulqadar Hassan & Ahsan Raza Khan & Anzar Mahmood, 2025. "Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review," Sustainability, MDPI, vol. 17(6), pages 1-42, March.
    17. Roy, Sanjoy, 2018. "The maximum likelihood optima for an economic load dispatch in presence of demand and generation variability," Energy, Elsevier, vol. 147(C), pages 915-923.
    18. Ahmadianfar, Iman & Kheyrandish, Ali & Jamei, Mehdi & Gharabaghi, Bahram, 2021. "Optimizing operating rules for multi-reservoir hydropower generation systems: An adaptive hybrid differential evolution algorithm," Renewable Energy, Elsevier, vol. 167(C), pages 774-790.
    19. Abdulaziz Almalaq & Tawfik Guesmi & Saleh Albadran, 2023. "A Hybrid Chaotic-Based Multiobjective Differential Evolution Technique for Economic Emission Dispatch Problem," Energies, MDPI, vol. 16(12), pages 1-34, June.
    20. Ali S. Alghamdi, 2022. "Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer for Solving Non-Convex Economic Load Dispatch Problems," Energies, MDPI, vol. 15(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3910-:d:1452063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.