IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2713-d1407888.html
   My bibliography  Save this article

Upgrading/Deacidification of Bio-Oils by Liquid–Liquid Extraction Using Aqueous Methanol as a Solvent

Author

Listed:
  • Nélio Teixeira Machado

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, PA, Brazil
    Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, PA, Brazil)

  • Silvio Alex Pereira da Mota

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, PA, Brazil
    Laboratory of Processes and Transformation of Materials (LPTM), Faculdade de Engenharia de Materiais, Universidade Federal do Sul e Sudeste do Pará, Quadra 17, Bloco 4, Lote Especial, Marabá 68505-080, PA, Brazil)

  • Raquel Ana Capela Leão

    (Laboratory of Biocatalysis and Organic Synthesis, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, N° 149, Bloco A 622, Rio de Janeiro 21941-909, RJ, Brazil)

  • Rodrigo Octavio Mendonça Alves de Souza

    (Laboratory of Biocatalysis and Organic Synthesis, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, N° 149, Bloco A 622, Rio de Janeiro 21941-909, RJ, Brazil)

  • Sergio Duvoisin Junior

    (Faculty of Chemical Engineering, Universidade do Estado do Amazonas-UEA, Avenida Darcy Vargas N° 1200, Manaus 69050-020, AM, Brazil)

  • Luiz Eduardo Pizarro Borges

    (Laboratory of Catalyst Preparation and Catalytic Cracking, Section of Chemical Engineering-IME, Praça General Tibúrcio N° 80, Rio de Janeiro 22290-270, RJ, Brazil)

  • Andréia de Andrade Mancio da Mota

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, PA, Brazil
    Laboratory of Processes and Transformation of Materials (LPTM), Faculdade de Engenharia de Materiais, Universidade Federal do Sul e Sudeste do Pará, Quadra 17, Bloco 4, Lote Especial, Marabá 68505-080, PA, Brazil)

Abstract

Oxygenated compounds such as acids in bio-oils (BO) have been related to the corrosion of metals and their storage instability when applied as fuels. Therefore, upgrading BO by removing acids (deacidification) can be a valuable technique to reduce corrosivity using specific separation processes. Therefore, the objective of this paper was to evaluate the effect of the water content in the solvent (aqueous methanol), the carboxylic acid content in the BO and extraction temperature on the deacidification process by liquid–liquid extraction (LLE), as well as the effect of the same parameters on the quality of the deacidified BO through physical–chemical and GC-MS analyses. The results show that an increase in the water content (5 to 25%) in the solvent and an increase in the carboxylic acids content (24.38 to 51.56 mg KOH/g) in the BO reduce the solvent’s capacity to extract carboxylic acids while increasing the temperature (25 to 35 °C) of the deacidification process promoted an increase in its capacity to remove them. Consequently, the highest deacidification efficiency (72.65%) is achieved with 5% water in methanol at 25 °C for BO 1 (TAN = 24.38 mg KOH/g). Therefore, the deacidification process through LLE using aqueous methanol contributed significantly to BO upgrading.

Suggested Citation

  • Nélio Teixeira Machado & Silvio Alex Pereira da Mota & Raquel Ana Capela Leão & Rodrigo Octavio Mendonça Alves de Souza & Sergio Duvoisin Junior & Luiz Eduardo Pizarro Borges & Andréia de Andrade Manc, 2024. "Upgrading/Deacidification of Bio-Oils by Liquid–Liquid Extraction Using Aqueous Methanol as a Solvent," Energies, MDPI, vol. 17(11), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2713-:d:1407888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2713/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2713-:d:1407888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.