IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2346-d1393655.html
   My bibliography  Save this article

Machine Learning Models for Regional Photovoltaic Power Generation Forecasting with Limited Plant-Specific Data

Author

Listed:
  • Mauro Tucci

    (Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy)

  • Antonio Piazzi

    (i-EM s.r.l., Via Aurelio Lampredi, 45, 57121 Livorno, Italy)

  • Dimitri Thomopulos

    (Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy)

Abstract

Predicting electricity production from renewable energy sources, such as solar photovoltaic installations, is crucial for effective grid management and energy planning in the transition towards a sustainable future. This study proposes machine learning approaches for predicting electricity production from solar photovoltaic installations at a regional level in Italy, not using data on individual installations. Addressing the challenge of diverse data availability between pinpoint meteorological inputs and aggregated power data for entire regions, we propose leveraging meteorological data from the centroid of each Italian province within each region. Particular attention is given to the selection of the best input features, which leads to augmenting the input with 1-hour-lagged meteorological data and previous-hour power data. Several ML approaches were compared and examined, optimizing the hyperparameters through five-fold cross-validation. The hourly predictions encompass a time horizon ranging from 1 to 24 h. Among tested methods, Kernel Ridge Regression and Random Forest Regression emerge as the most effective models for our specific application. We also performed experiments to assess how frequently the models should be retrained and how frequently the hyperparameters should be optimized in order to comprise between accuracy and computational costs. Our results indicate that once trained, the model can provide accurate predictions for extended periods without frequent retraining, highlighting its long-term reliability.

Suggested Citation

  • Mauro Tucci & Antonio Piazzi & Dimitri Thomopulos, 2024. "Machine Learning Models for Regional Photovoltaic Power Generation Forecasting with Limited Plant-Specific Data," Energies, MDPI, vol. 17(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2346-:d:1393655
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2346/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2346/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    2. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Sharadga, Hussein & Hajimirza, Shima & Balog, Robert S., 2020. "Time series forecasting of solar power generation for large-scale photovoltaic plants," Renewable Energy, Elsevier, vol. 150(C), pages 797-807.
    4. Memme, Samuele & Fossa, Marco, 2022. "Maximum energy yield of PV surfaces in France and Italy from climate based equations for optimum tilt at different azimuth angles," Renewable Energy, Elsevier, vol. 200(C), pages 845-866.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aissa Meflah & Fathia Chekired & Nadia Drir & Laurent Canale, 2024. "Accurate Method for Solar Power Generation Estimation for Different PV (Photovoltaic Panels) Technologies," Resources, MDPI, vol. 13(12), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aristeidis Mystakidis & Paraskevas Koukaras & Nikolaos Tsalikidis & Dimosthenis Ioannidis & Christos Tjortjis, 2024. "Energy Forecasting: A Comprehensive Review of Techniques and Technologies," Energies, MDPI, vol. 17(7), pages 1-33, March.
    2. Zhang, Ruoyang & Wu, Yu & Zhang, Lei & Xu, Chongbin & Wang, ZeYu & Zhang, Yanfeng & Sun, Xiaomin & Zuo, Xin & Wu, Yuhan & Chen, Qian, 2025. "A multiscale network with mixed features and extended regional weather forecasts for predicting short-term photovoltaic power," Energy, Elsevier, vol. 318(C).
    3. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    4. Xilong Lin & Yisen Niu & Zixuan Yan & Lianglin Zou & Ping Tang & Jifeng Song, 2024. "Hybrid Photovoltaic Output Forecasting Model with Temporal Convolutional Network Using Maximal Information Coefficient and White Shark Optimizer," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
    5. Kerschbaum, Alina & Trentmann, Lennart & Hanel, Andreas & Fendt, Sebastian & Spliethoff, Hartmut, 2025. "Methods for analysing renewable energy potentials in energy system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    6. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    7. Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Parametric Forecast of Solar Energy over Time by Applying Machine Learning Techniques: Systematic Review," Energies, MDPI, vol. 18(6), pages 1-51, March.
    8. Aliyeva, Xeniya & Memon, Shazim Ali & Nazir, Kashif & Kim, Jong, 2024. "Energy consumption forecasting in PCM-integration buildings considering building and environmental parameters for future climate scenarios," Energy, Elsevier, vol. 310(C).
    9. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    10. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    11. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    12. Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
    13. Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
    14. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    15. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    16. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
    17. Hou, Guolian & Ke, Yin & Huang, Congzhi, 2021. "A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe," Energy, Elsevier, vol. 237(C).
    18. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    19. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    20. Buratti, C. & Barbanera, M. & Palladino, D., 2014. "An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks," Applied Energy, Elsevier, vol. 120(C), pages 125-132.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2346-:d:1393655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.