IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1915-d1069004.html
   My bibliography  Save this article

Power Quality Transient Detection and Characterization Using Deep Learning Techniques

Author

Listed:
  • Nuno M. Rodrigues

    (Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
    These authors contributed equally to this work.)

  • Fernando M. Janeiro

    (Instituto de Telecomunicações, Universidade de Évora, 7000-671 Évora, Portugal
    These authors contributed equally to this work.)

  • Pedro M. Ramos

    (Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
    These authors contributed equally to this work.)

Abstract

Power quality issues can affect the performance of devices powered by the grid and can, in severe cases, permanently damage connected devices. Events that affect power quality include sags, swells, waveform distortions and transients. Transients are one of the most common power quality disturbances and are caused by lightning strikes or switching activities among power-grid-connected systems and devices. Transients can reach very high magnitudes, and their duration spans from nanoseconds to milliseconds. This study proposed a deep-learning-based technique that was supported by convolutional neural networks and a bidirectional long short-term memory approach in order to detect and characterize power-quality transients. The method was validated (i.e., benchmarked) using an alternative algorithm that had been previously validated according to a digital high-pass filter and a morphological closing operation. The training and performance assessments were carried out using actual power-grid-measured data and events.

Suggested Citation

  • Nuno M. Rodrigues & Fernando M. Janeiro & Pedro M. Ramos, 2023. "Power Quality Transient Detection and Characterization Using Deep Learning Techniques," Energies, MDPI, vol. 16(4), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1915-:d:1069004
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shouxiang & Chen, Haiwen, 2019. "A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network," Applied Energy, Elsevier, vol. 235(C), pages 1126-1140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    2. Ren, Tao & Modest, Michael F. & Fateev, Alexander & Sutton, Gavin & Zhao, Weijie & Rusu, Florin, 2019. "Machine learning applied to retrieval of temperature and concentration distributions from infrared emission measurements," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    4. Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
    5. Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
    6. Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.
    7. Noor Hussain & Mashood Nasir & Juan Carlos Vasquez & Josep M. Guerrero, 2020. "Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review," Energies, MDPI, vol. 13(9), pages 1-31, May.
    8. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    9. Raquel Martinez & Pablo Castro & Alberto Arroyo & Mario Manana & Noemi Galan & Fidel Simon Moreno & Sergio Bustamante & Alberto Laso, 2022. "Techniques to Locate the Origin of Power Quality Disturbances in a Power System: A Review," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
    10. Lin Yang & Linming Guo & Wenhai Zhang & Xiaomei Yang, 2022. "Classification of Multiple Power Quality Disturbances by Tunable-Q Wavelet Transform with Parameter Selection," Energies, MDPI, vol. 15(9), pages 1-16, May.
    11. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    12. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Azam Bagheri & Roger Alves de Oliveira & Math H. J. Bollen & Irene Y. H. Gu, 2022. "A Framework Based on Machine Learning for Analytics of Voltage Quality Disturbances," Energies, MDPI, vol. 15(4), pages 1-14, February.
    14. Artvin-Darien Gonzalez-Abreu & Roque-Alfredo Osornio-Rios & Arturo-Yosimar Jaen-Cuellar & Miguel Delgado-Prieto & Jose-Alfonso Antonino-Daviu & Athanasios Karlis, 2022. "Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review," Energies, MDPI, vol. 15(5), pages 1-26, March.
    15. da Silva, Roberto Perillo Barbosa & Quadros, Rodolfo & Shaker, Hamid Reza & da Silva, Luiz Carlos Pereira, 2020. "Effects of mixed electronic loads on the electrical energy systems considering different loading conditions with focus on power quality and billing issues," Applied Energy, Elsevier, vol. 277(C).
    16. Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    17. Mohammad Reza Shadi & Hamid Mirshekali & Rahman Dashti & Mohammad-Taghi Ameli & Hamid Reza Shaker, 2021. "A Parameter-Free Approach for Fault Section Detection on Distribution Networks Employing Gated Recurrent Unit," Energies, MDPI, vol. 14(19), pages 1-15, October.
    18. Jiajun Cai & Kai Zhang & Hui Jiang, 2023. "Power Quality Disturbance Classification Based on Parallel Fusion of CNN and GRU," Energies, MDPI, vol. 16(10), pages 1-12, May.
    19. Cheng-I Chen & Sunneng Sandino Berutu & Yeong-Chin Chen & Hao-Cheng Yang & Chung-Hsien Chen, 2022. "Regulated Two-Dimensional Deep Convolutional Neural Network-Based Power Quality Classifier for Microgrid," Energies, MDPI, vol. 15(7), pages 1-16, March.
    20. Zemin Gao & Mingtao Ding, 2022. "Application of convolutional neural network fused with machine learning modeling framework for geospatial comparative analysis of landslide susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 833-858, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1915-:d:1069004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.