IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1630-d1059822.html
   My bibliography  Save this article

Multi-Objective Optimization Strategy for Permanent Magnet Synchronous Motor Based on Combined Surrogate Model and Optimization Algorithm

Author

Listed:
  • Yinquan Yu

    (School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
    Key Laboratory of Conveyance and Equipment of Ministry of Education, East China Jiaotong University, Nanchang 330013, China
    Institute of Precision Machining and Intelligent Equipment Manufacturing, East China Jiaotong University, Nanchang 330013, China)

  • Yue Pan

    (School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
    Key Laboratory of Conveyance and Equipment of Ministry of Education, East China Jiaotong University, Nanchang 330013, China
    Institute of Precision Machining and Intelligent Equipment Manufacturing, East China Jiaotong University, Nanchang 330013, China)

  • Qiping Chen

    (School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
    Key Laboratory of Conveyance and Equipment of Ministry of Education, East China Jiaotong University, Nanchang 330013, China
    Institute of Precision Machining and Intelligent Equipment Manufacturing, East China Jiaotong University, Nanchang 330013, China)

  • Yiming Hu

    (School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
    Key Laboratory of Conveyance and Equipment of Ministry of Education, East China Jiaotong University, Nanchang 330013, China
    Institute of Precision Machining and Intelligent Equipment Manufacturing, East China Jiaotong University, Nanchang 330013, China)

  • Jian Gao

    (School of Electrical and Information Engineering, Hunan University, Changsha 410006, China)

  • Zhao Zhao

    (Faculty of Electrical Engineering and Information Technology, Otto-von-Guericke University of Magdeburg, 39106 Magdeburg, Germany)

  • Shuangxia Niu

    (Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China)

  • Shaowei Zhou

    (CRRC Changchun Railway Vehicles Corporation Limited, 435 Qingyin Road, Changchun 130062, China)

Abstract

When a permanent magnet synchronous motor (PMSM) is designed according to the traditional motor design theory, the performance of the motor is often challenging to achieve the desired goal, and further optimization of the motor design parameters is usually required. However, the motor is a strongly coupled, non-linear, multivariate complex system, and it is a challenge to optimize the motor by traditional optimization methods. It needs to rely on reliable surrogate models and optimization algorithms to improve the performance of the PMSM, which is one of the problematic aspects of motor optimization. Therefore, this paper proposes a strategy based on a combination of a high-precision combined surrogate model and the optimization method to optimize the stator and rotor structures of interior PMSM (IPMSM). First, the variables were classified into two layers with high and low sensitivity based on the comprehensive parameter sensitivity analysis. Then, Latin hypercube sampling (LHS) is used to obtain sample points for highly sensitive variables, and various methods are employed to construct surrogate models for variables. Each optimization target is based on the acquired sample points, from which the most accurate combined surrogate model is selected and combined with non-dominated ranking genetic algorithm-II (NSGA-II) to find the best. After optimizing the high-sensitivity variables, a new finite element model (FEM) is built, and the Taguchi method is used to optimize the low-sensitivity variables. Finally, finite element analysis (FEA) was adopted to compare the performance of the initial model and the optimized ones of the IPMSM. The results showed that the performance of the optimized motor is improved to prove the effectiveness and reliability of the proposed method.

Suggested Citation

  • Yinquan Yu & Yue Pan & Qiping Chen & Yiming Hu & Jian Gao & Zhao Zhao & Shuangxia Niu & Shaowei Zhou, 2023. "Multi-Objective Optimization Strategy for Permanent Magnet Synchronous Motor Based on Combined Surrogate Model and Optimization Algorithm," Energies, MDPI, vol. 16(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1630-:d:1059822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    2. Shields, Michael D. & Zhang, Jiaxin, 2016. "The generalization of Latin hypercube sampling," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 96-108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Bernard & Linh Dang & Luc Moreau & Salvy Bourguet, 2022. "A Pre-Sizing Method for Salient Pole Synchronous Reluctance Machines with Loss Minimization Control for a Small Urban Electrical Vehicle Considering the Driving Cycle," Energies, MDPI, vol. 15(23), pages 1-19, December.
    2. Wang, Tianzhe & Chen, Zequan & Li, Guofa & He, Jialong & Liu, Chao & Du, Xuejiao, 2024. "A novel method for high-dimensional reliability analysis based on activity score and adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Sebastian Berhausen & Tomasz Jarek, 2021. "Method of Limiting Shaft Voltages in AC Electric Machines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    4. Chengcheng Liu & Jiawei Lu & Youhua Wang & Gang Lei & Jianguo Zhu & Youguang Guo, 2018. "Design Issues for Claw Pole Machines with Soft Magnetic Composite Cores," Energies, MDPI, vol. 11(8), pages 1-15, August.
    5. Md Sydur Rahman & Grace Firsta Lukman & Pham Trung Hieu & Kwang-Il Jeong & Jin-Woo Ahn, 2021. "Optimization and Characteristics Analysis of High Torque Density 12/8 Switched Reluctance Motor Using Metaheuristic Gray Wolf Optimization Algorithm," Energies, MDPI, vol. 14(7), pages 1-17, April.
    6. Qihong Feng & Kuankuan Wu & Jiyuan Zhang & Sen Wang & Xianmin Zhang & Daiyu Zhou & An Zhao, 2022. "Optimization of Well Control during Gas Flooding Using the Deep-LSTM-Based Proxy Model: A Case Study in the Baoshaceng Reservoir, Tarim, China," Energies, MDPI, vol. 15(7), pages 1-14, March.
    7. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    8. Jia, Wantao & Feng, Xiaotong & Hao, Mengli & Ma, Shichao, 2024. "Deep neural network method to predict the dynamical system response under random excitation of combined Gaussian and Poisson white noises," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    9. Jiacheng Liu & Haiyun Liu & Cong Zhang & Jiyin Cao & Aibo Xu & Jiwei Hu, 2024. "Derivative-Variance Hybrid Global Sensitivity Measure with Optimal Sampling Method Selection," Mathematics, MDPI, vol. 12(3), pages 1-15, January.
    10. Sajjad Ahmadi & Thierry Lubin & Abolfazl Vahedi & Nasser Taghavi, 2021. "Sensitivity-Based Optimization of Interior Permanent Magnet Synchronous Motor for Torque Characteristic Enhancement," Energies, MDPI, vol. 14(8), pages 1-15, April.
    11. Edison Gundabattini & Arkadiusz Mystkowski & Adam Idzkowski & Raja Singh R. & Darius Gnanaraj Solomon, 2021. "Thermal Mapping of a High-Speed Electric Motor Used for Traction Applications and Analysis of Various Cooling Methods—A Review," Energies, MDPI, vol. 14(5), pages 1-32, March.
    12. Chengcheng Liu & Gang Lei & Bo Ma & Youguang Guo & Jianguo Zhu, 2018. "Robust Design of a Low-Cost Permanent Magnet Motor with Soft Magnetic Composite Cores Considering the Manufacturing Process and Tolerances," Energies, MDPI, vol. 11(8), pages 1-17, August.
    13. Niklas Umland & Kora Winkler & David Inkermann, 2023. "Multidisciplinary Design Automation of Electric Motors—Systematic Literature Review and Methodological Framework," Energies, MDPI, vol. 16(20), pages 1-39, October.
    14. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Wittek, Karsten, 2020. "Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine," Energy, Elsevier, vol. 195(C).
    15. Jilong Zhao & Xiaowei Quan & Mengdie Jing & Mingyao Lin & Nian Li, 2018. "Design, Analysis and Model Predictive Control of an Axial Field Switched-Flux Permanent Magnet Machine for Electric Vehicle/Hybrid Electric Vehicle Applications," Energies, MDPI, vol. 11(7), pages 1-22, July.
    16. Rahul R. Kumar & Mauro Andriollo & Giansalvo Cirrincione & Maurizio Cirrincione & Andrea Tortella, 2022. "A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors," Energies, MDPI, vol. 15(23), pages 1-36, November.
    17. Xiushan Wu & Can Li & Sian Sun & Renyuan Tong & Qing Li, 2019. "A Study on the Heating Method and Implementation of a Shrink-Fit Tool Holder," Energies, MDPI, vol. 12(18), pages 1-17, September.
    18. Xie, Bin & Wang, Yanzhong & Zhu, Yunyi & Liu, Peng & Wu, Yu & Lu, Fengxia, 2024. "Time-variant reliability analysis of angular contact ball bearing considering the coupled effect of rolling contact fatigue damage and wear," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Hanye Xiong & Zhenzhong Shen & Yongchao Li & Yiqing Sun, 2024. "A Novel Inversion Method for Permeability Coefficients of Concrete Face Rockfill Dam Based on Sobol-IDBO-SVR Fusion Surrogate Model," Mathematics, MDPI, vol. 12(7), pages 1-19, April.
    20. Sepehrzad, Reza & Al-Durra, Ahmed & Anvari-Moghaddam, Amjad & Sadabadi, Mahdieh S., 2025. "Short-term and probability scenario-oriented energy management of integrated energy distribution systems with considering energy market interactions and end-user participation," Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1630-:d:1059822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.