IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1236-d1044885.html
   My bibliography  Save this article

Lean Methane Mixtures in Turbulent Jet Ignition Combustion System

Author

Listed:
  • Ireneusz Pielecha

    (Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Filip Szwajca

    (Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

The development of modern vehicle drives is aimed at reducing fuel consumption (i.e., crude oil) and minimizing the exhaust emission of toxic components. One such development is the implementation of a two-stage combustion system. Such a system initiates ignition in the prechamber, and then the burning mixture flows into the main chamber, where it ignites the lean mixture. The system allows the efficient combustion of lean mixtures, both liquid and gaseous fuels, in the cylinder. This article proposes a solution for internal combustion engines with a cylinder capacity of approx. 500 cm 3 . The tests were carried out on a single-cylinder engine powered by pure methane supplied through a double, parallel injection system. A wide range of charge ignitability requires the use of an active chamber containing an injector and a spark plug. The tests were carried out at n = 1500 rpm with three load values (indicated mean effective pressure, IMEP): 2, 4 and 6 bar. All of these tests were carried out at a constant value of the center of combustion (CoC), 8 deg CA. This approach resulted in the ignition timing being the control signal for the CoC. As a result of the conducted research, it was found that an increase in the load, which improved the inter-chamber flow, allowed for the combustion of leaner mixtures without increasing the coefficient of variation, CoV(IMEP). The tests achieved a lean mixture combustion with a value of λ = 1.7 and an acceptable level of non-uniformity of the engine operation, CoV(IMEP) < 8%. The engine’s indicated efficiency when using a two-stage system reached a value of about 42% at λ = 1.5 (which is about 8 percentage points more than with a conventional combustion system at λ = 1.0).

Suggested Citation

  • Ireneusz Pielecha & Filip Szwajca, 2023. "Lean Methane Mixtures in Turbulent Jet Ignition Combustion System," Energies, MDPI, vol. 16(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1236-:d:1044885
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmadi, Rouhollah & Hosseini, S. Mohammad, 2018. "Numerical investigation on adding/substituting hydrogen in the CDC and RCCI combustion in a heavy duty engine," Applied Energy, Elsevier, vol. 213(C), pages 450-468.
    2. Zhang, Miaomiao & Hong, Wei & Xie, Fangxi & Liu, Yu & Su, Yan & Li, Xiaoping & Liu, Haifeng & Fang, Kangning & Zhu, Xinbo, 2019. "Effects of diluents on cycle-by-cycle variations in a spark ignition engine fueled with methanol," Energy, Elsevier, vol. 182(C), pages 1132-1140.
    3. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    4. Chen, Yulin & Dong, Guangyu & Mack, J. Hunter & Butt, Ryan H. & Chen, Jyh-Yuan & Dibble, Robert W., 2016. "Cyclic variations and prior-cycle effects of ion current sensing in an HCCI engine: A time-series analysis," Applied Energy, Elsevier, vol. 168(C), pages 628-635.
    5. Duan, Xiongbo & Liu, Jingping & Yuan, Zhipeng & Guo, Genmiao & Liu, Qi & Tang, Qijun & Deng, Banglin & Guan, Jinhuan, 2018. "Experimental investigation of the effects of injection strategies on cycle-to-cycle variations of a DISI engine fueled with ethanol and gasoline blend," Energy, Elsevier, vol. 165(PB), pages 455-470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ireneusz Pielecha & Filip Szwajca, 2023. "Combustion of Lean Methane/Propane Mixtures with an Active Prechamber Engine in Terms of Various Fuel Distribution," Energies, MDPI, vol. 16(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guardiola, C. & Pla, B. & Bares, P. & Barbier, A., 2018. "An analysis of the in-cylinder pressure resonance excitation in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1272-1279.
    2. Sangram Kishore Nanda & Boru Jia & Andrew Smallbone & Anthony Paul Roskilly, 2017. "Development of a Diesel Engine Thermal Overload Monitoring System with Applications and Test Results," Energies, MDPI, vol. 10(7), pages 1-13, June.
    3. Duan, Xiongbo & Feng, Lining & Liu, Haibo & Jiang, Pengfei & Chen, Chao & Sun, Zhiqiang, 2023. "Experimental investigation on exhaust emissions of a heavy-duty vehicle powered by a methanol-fuelled spark ignition engine under world Harmonized Transient Cycle and actual on-road driving conditions," Energy, Elsevier, vol. 282(C).
    4. Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
    5. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Numerical investigation on selecting appropriate piston bowl geometry and compression ratio for gasoline-fuelled homogeneous charge compression ignited light-duty diesel engine," Energy, Elsevier, vol. 282(C).
    6. Duan, Xiongbo & Xu, Zhengxin & Sun, Xingyu & Deng, Banglin & Liu, Jingping, 2021. "Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone–butanol–ethanol/diesel blend fuels," Energy, Elsevier, vol. 231(C).
    7. Zhu, Yizi & He, Zhixia & Xuan, Tiemin & Shao, Zhuang, 2024. "An enhanced automated machine learning model for optimizing cycle-to-cycle variation in hydrogen-enriched methanol engines," Applied Energy, Elsevier, vol. 362(C).
    8. Israel Reyes-Ramírez & Santiago D. Martínez-Boggio & Pedro L. Curto-Risso & Alejandro Medina & Antonio Calvo Hernández & Lev Guzmán-Vargas, 2018. "Symbolic Analysis of the Cycle-to-Cycle Variability of a Gasoline–Hydrogen Fueled Spark Engine Model," Energies, MDPI, vol. 11(4), pages 1-19, April.
    9. shateri, Amirali & jalili, Bahram & saffar, Saber & Jalili, Payam & Domiri Ganji, Davood, 2024. "Numerical study of the effect of ultrasound waves on the turbulent flow with chemical reaction," Energy, Elsevier, vol. 289(C).
    10. Halis, Serdar & Kocakulak, Tolga, 2024. "RSM based optimization of lambda and mixed fuel concentration parameters of an LTC mode engine," Energy, Elsevier, vol. 306(C).
    11. Catapano, Francesco & Di Iorio, Silvana & Magno, Agnese & Vaglieco, Bianca Maria, 2022. "Effect of fuel quality on combustion evolution and particle emissions from PFI and GDI engines fueled with gasoline, ethanol and blend, with focus on 10–23 nm particles," Energy, Elsevier, vol. 239(PB).
    12. Chao, Yuedong & Chen, Xinye & Deng, Jun & Hu, Zongjie & Wu, Zhijun & Li, Liguang, 2018. "Additional injection timing effects on first cycle during gasoline engine cold start based on ion current detection system," Applied Energy, Elsevier, vol. 221(C), pages 55-66.
    13. Zhenbin Chen & Jiaojun Deng & Haisheng Zhen & Chenyu Wang & Li Wang, 2022. "Experimental Investigation of Hydrous Ethanol Gasoline on Engine Noise, Cyclic Variations and Combustion Characteristics," Energies, MDPI, vol. 15(5), pages 1-17, February.
    14. Gharehghani, Ayat & Salahi, Mohammad Mahdi & Andwari, Amin Mahmoudzadeh & Mikulski, Maciej & Könnö, Juho, 2023. "Reactivity enhancement of natural gas/diesel RCCI engine by adding ozone species," Energy, Elsevier, vol. 274(C).
    15. Komninos, N.P. & Rakopoulos, C.D., 2016. "Heat transfer in hcci phenomenological simulation models: A review," Applied Energy, Elsevier, vol. 181(C), pages 179-209.
    16. Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
    17. Xinyan Wang & Hua Zhao, 2022. "Modelling Study of Cycle-To-Cycle Variations (CCV) in Spark Ignition (SI)-Controlled Auto-Ignition (CAI) Hybrid Combustion Engine by Using Reynolds-Averaged Navier–Stokes (RANS) and Large Eddy Simulat," Energies, MDPI, vol. 15(12), pages 1-21, June.
    18. Ezoji, Hosein & Ajarostaghi, Seyed Soheil Mousavi, 2020. "Thermodynamic-CFD analysis of waste heat recovery from homogeneous charge compression ignition (HCCI) engine by Recuperative organic Rankine Cycle (RORC): Effect of operational parameters," Energy, Elsevier, vol. 205(C).
    19. Duan, Xiongbo & Zhang, Shiheng & Liu, Yiqun & Li, Yangtang & Liu, Jingping & Lai, Ming-Chia & Deng, Banglin, 2020. "Numerical investigation the effects of the twin-spark plugs coupled with EGR on the combustion process and emissions characteristics in a lean burn natural gas SI engine," Energy, Elsevier, vol. 206(C).
    20. Michal Puškár, 2022. "Advanced System Determined for Utilisation of Sustainable Biofuels in High-Performance Sport Applications," Sustainability, MDPI, vol. 14(11), pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1236-:d:1044885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.