IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p932-d1035461.html
   My bibliography  Save this article

Modeling of Dynamic Operation Modes of IVG.1M Reactor

Author

Listed:
  • Ruslan Irkimbekov

    (“Institute of Atomic Energy” Branch of the National Nuclear Center of the Republic of Kazakhstan, Kurchatov 071100, Kazakhstan)

  • Alexander Vurim

    (“Institute of Atomic Energy” Branch of the National Nuclear Center of the Republic of Kazakhstan, Kurchatov 071100, Kazakhstan)

  • Galina Vityuk

    (“Institute of Atomic Energy” Branch of the National Nuclear Center of the Republic of Kazakhstan, Kurchatov 071100, Kazakhstan)

  • Olzhas Zhanbolatov

    (“Institute of Atomic Energy” Branch of the National Nuclear Center of the Republic of Kazakhstan, Kurchatov 071100, Kazakhstan)

  • Zamanbek Kozhabayev

    (“Institute of Atomic Energy” Branch of the National Nuclear Center of the Republic of Kazakhstan, Kurchatov 071100, Kazakhstan)

  • Artur Surayev

    (“Institute of Atomic Energy” Branch of the National Nuclear Center of the Republic of Kazakhstan, Kurchatov 071100, Kazakhstan)

Abstract

This paper presents the results of a calculation code approach providing a solution to the point kinetics problem for the IVG.1M research reactor of the National Nuclear Center of the Republic of Kazakhstan and allowing the simulation of dynamic processes going on during reactor start-ups, including changes in the thermal state of all its elements, reactor regulator displacement, accumulation of absorbers in the fuel, and the beryllium reflector. A mathematical description of the IVG.1M point kinetics model is presented, which provides a calculation of the reactor neutron parameters, taking into account the dependence of reactivity effects on the temperature, changes in the isotopic composition of materials, and thermal expansion of core structural elements. An array of data values was formed of reactivity added by separate elements of the core when changing their thermal state and other reactor parameters, as well as an array of data with the parameters of heat exchange of coolant-based reactor structural elements. These are used in the process of solving the point kinetics problem to directly replace formal parameters, eliminating the need to calculate the values of these parameters at each calculation step. Preliminary calculations to form an array of values of reactivity effects was applied to the reactor by separate structural elements when their temperature changes were performed using the IVG.1M precision reactor calculation model. The model was validated by the reactor parameters in the critical state. Preliminary calculations to form an array of data with the parameters of heat exchange of coolant-based reactor structural elements were performed in ANSYS Fluent software using the calculation model that describes the IVG.1M reactor fuel element in detail. Validation of the developed calculation code based on the results of two start-ups of the IVG.1M reactor was performed and its applicability for the analysis of transient and emergency modes of reactor operation and evaluation of its safe operation limits was confirmed.

Suggested Citation

  • Ruslan Irkimbekov & Alexander Vurim & Galina Vityuk & Olzhas Zhanbolatov & Zamanbek Kozhabayev & Artur Surayev, 2023. "Modeling of Dynamic Operation Modes of IVG.1M Reactor," Energies, MDPI, vol. 16(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:932-:d:1035461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Przemysław Stanisz & Mikołaj Oettingen & Jerzy Cetnar, 2022. "Development of a Trajectory Period Folding Method for Burnup Calculations," Energies, MDPI, vol. 15(6), pages 1-15, March.
    2. Tian Jing & Sebastian Schunert & Vincent M. Labouré & Mark D. DeHart & Ching-Sheng Lin & Javier Ortensi, 2022. "Multiphysics Simulation of the NASA SIRIUS-CAL Fuel Experiment in the Transient Test Reactor Using Griffin," Energies, MDPI, vol. 15(17), pages 1-28, August.
    3. Jerzy Cetnar & Przemysław Stanisz & Mikołaj Oettingen, 2021. "Linear Chain Method for Numerical Modelling of Burnup Systems," Energies, MDPI, vol. 14(6), pages 1-19, March.
    4. Jianhui Wu & Jingen Chen & Chunyan Zou & Xiaoxiao Li, 2022. "Accident Modeling and Analysis of Nuclear Reactors," Energies, MDPI, vol. 15(16), pages 1-3, August.
    5. Matt Krecicki & Dan Kotlyar, 2022. "Full-Core Coupled Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Analysis of Low-Enriched Uranium Nuclear Thermal Propulsion Reactors," Energies, MDPI, vol. 15(19), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikołaj Oettingen & Juyoul Kim, 2023. "Detection of Numerical Power Shift Anomalies in Burnup Modeling of a PWR Reactor," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    2. Mikołaj Oettingen, 2022. "The Application of Radiochemical Measurements of PWR Spent Fuel for the Validation of Burnup Codes," Energies, MDPI, vol. 15(9), pages 1-15, April.
    3. Minyu Peng & Yafen Liu & Yang Zou & Ye Dai, 2023. "Preliminary Design and Study of a Small Modular Chlorine Salt Fast Reactor Cooled by Supercritical Carbon Dioxide," Energies, MDPI, vol. 16(13), pages 1-18, June.
    4. Przemysław Stanisz & Mikołaj Oettingen & Jerzy Cetnar, 2022. "Development of a Trajectory Period Folding Method for Burnup Calculations," Energies, MDPI, vol. 15(6), pages 1-15, March.
    5. Biao Zhou & Jun Sun & Yuliang Sun, 2023. "Investigation on Laminar Flow and Heat Transfer of Helium–Xenon Gas Mixtures with Variable Properties," Energies, MDPI, vol. 16(4), pages 1-17, February.
    6. Maithah M. Alaleeli & Saeed A. Alameri & Mohammad Alrwashdeh, 2022. "Neutronic Analysis of SiC/SiC Sandwich Cladding Design in APR-1400 under Normal Operation Conditions," Energies, MDPI, vol. 15(14), pages 1-20, July.
    7. Michał Górkiewicz & Jerzy Cetnar, 2021. "Flattening of the Power Distribution in the HTGR Core with Structured Control Rods," Energies, MDPI, vol. 14(21), pages 1-14, November.
    8. Mohammad Alrwashdeh & Saeed A. Alameri, 2022. "Chromium-Coated Zirconium Cladding Neutronics Impact for APR-1400 Reactor Core," Energies, MDPI, vol. 15(21), pages 1, October.
    9. Girma Tadesse Chala & Berihun Mamo Negash, 2022. "Artificial Neural Network and Regression Models for Predicting Intrusion of Non-Reacting Gases into Production Pipelines," Energies, MDPI, vol. 15(5), pages 1-14, February.
    10. Vu, Anh Ngoc, 2023. "Demand reduction campaigns for the illegal wildlife trade in authoritarian Vietnam: Ungrounded environmentalism," World Development, Elsevier, vol. 164(C).
    11. Baoxin Yuan & Jie Zheng & Jian Wang & Herong Zeng & Wankui Yang & Huan Huang & Songbao Zhang, 2023. "Numerical Calculation Scheme of Neutronics-Thermal-Mechanical Coupling in Solid State Reactor Core Based on Galerkin Finite Element Method," Energies, MDPI, vol. 16(2), pages 1-17, January.
    12. Yizhen Wang & Menglei Cui & Jiong Guo & Han Zhang & Yingjie Wu & Fu Li, 2023. "Decay Branch Ratio Sampling Method with Dirichlet Distribution," Energies, MDPI, vol. 16(4), pages 1-17, February.
    13. Nianbiao Deng & Chao Xie & Cheng Hou & Zhulun Li & Jinsen Xie & Tao Yu, 2023. "The Influence Mechanism of Neutron Kinetics of the Accelerator-Driven Subcritical Reactor Based on the Fast/Thermal Neutron Spectra by Monte Carlo Homogenization Method," Energies, MDPI, vol. 16(8), pages 1-15, April.
    14. Mikołaj Oettingen, 2021. "Assessment of the Radiotoxicity of Spent Nuclear Fuel from a Fleet of PWR Reactors," Energies, MDPI, vol. 14(11), pages 1-23, May.
    15. Mohannad Khameis Almteiri & Juyoul Kim, 2022. "Applications of Machine Learning to Consequence Analysis of Hypothetical Accidents at Barakah Nuclear Power Plant Unit 1," Energies, MDPI, vol. 15(16), pages 1-11, August.
    16. Harleen Kaur Sandhu & Saran Srikanth Bodda & Abhinav Gupta, 2023. "A Future with Machine Learning: Review of Condition Assessment of Structures and Mechanical Systems in Nuclear Facilities," Energies, MDPI, vol. 16(6), pages 1-23, March.
    17. Nailia Rakhimova, 2022. "Recent Advances in Alternative Cementitious Materials for Nuclear Waste Immobilization: A Review," Sustainability, MDPI, vol. 15(1), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:932-:d:1035461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.