IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p647-d1025955.html
   My bibliography  Save this article

An Improved Hydraulic Energy Storage Wave Power-Generation System Based on QPR Control

Author

Listed:
  • Zhigang Liu

    (China Southern Power Grid Technology Co., Ltd., Guangzhou 510060, China)

  • Wei Huang

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Shi Liu

    (China Southern Power Grid Technology Co., Ltd., Guangzhou 510060, China)

  • Xiaomei Wu

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Chun Sing Lai

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China
    Brunel Interdisciplinary Power Systems Research Centre, Department of Electronic and Electrical Engineering, Brunel University London, London UB8 3PH, UK)

  • Yi Yang

    (China Southern Power Grid Technology Co., Ltd., Guangzhou 510060, China)

Abstract

According to the inherent characteristics of the hydraulic power take-off (PTO) system, the output power of a generator tends to be intermittent when the wave is random. Therefore, this paper aims to improve the effective utilization of wave energy and reduce power intermittency by constructing a topology with two branches to transmit electrical energy. Firstly, the wave-to-wire (W2W) model of the system is constructed. Secondly, the W2W model is simulated by using synovial and quasi-proportional resonance (QPR) control with regular and irregular incident waves, and the results of PI control are compared. Then, the control strategy in simulation is verified by experiments. The simulation and experimental results show that the control strategy has better performance, and the stability of the system output power is greatly improved.

Suggested Citation

  • Zhigang Liu & Wei Huang & Shi Liu & Xiaomei Wu & Chun Sing Lai & Yi Yang, 2023. "An Improved Hydraulic Energy Storage Wave Power-Generation System Based on QPR Control," Energies, MDPI, vol. 16(2), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:647-:d:1025955
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/647/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/647/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ropero-Giralda, Pablo & Crespo, Alejandro J.C. & Tagliafierro, Bonaventura & Altomare, Corrado & Domínguez, José M. & Gómez-Gesteira, Moncho & Viccione, Giacomo, 2020. "Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics," Renewable Energy, Elsevier, vol. 162(C), pages 1763-1776.
    2. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    3. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    4. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    5. Zhang, Xiantao & Tian, Xinliang & Xiao, Longfei & Li, Xin & Chen, Lifen, 2018. "Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter," Applied Energy, Elsevier, vol. 228(C), pages 450-467.
    6. Babarit, A., 2015. "A database of capture width ratio of wave energy converters," Renewable Energy, Elsevier, vol. 80(C), pages 610-628.
    7. Wang, Chen & Zhang, Yongliang, 2021. "Hydrodynamic performance of an offshore Oscillating Water Column device mounted over an immersed horizontal plate: A numerical study," Energy, Elsevier, vol. 222(C).
    8. Contestabile, Pasquale & Crispino, Gaetano & Di Lauro, Enrico & Ferrante, Vincenzo & Gisonni, Corrado & Vicinanza, Diego, 2020. "Overtopping breakwater for wave Energy Conversion: Review of state of art, recent advancements and what lies ahead," Renewable Energy, Elsevier, vol. 147(P1), pages 705-718.
    9. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    10. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    11. Penalba, Markel & Ringwood, John V., 2019. "A high-fidelity wave-to-wire model for wave energy converters," Renewable Energy, Elsevier, vol. 134(C), pages 367-378.
    12. Ji Woo Nam & Yong Jun Sung & Seong Wook Cho, 2021. "Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    13. Martins, J.C. & Goulart, M.M. & Gomes, M. das N. & Souza, J.A. & Rocha, L.A.O. & Isoldi, L.A. & dos Santos, E.D., 2018. "Geometric evaluation of the main operational principle of an overtopping wave energy converter by means of Constructal Design," Renewable Energy, Elsevier, vol. 118(C), pages 727-741.
    14. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    15. Wang, LiGuo & Lin, MaoFeng & Tedeschi, Elisabetta & Engström, Jens & Isberg, Jan, 2020. "Improving electric power generation of a standalone wave energy converter via optimal electric load control," Energy, Elsevier, vol. 211(C).
    16. Francisco Haces-Fernandez & Hua Li & David Ramirez, 2022. "Analysis of Wave Energy Behavior and Its Underlying Reasons in the Gulf of Mexico Based on Computer Animation and Energy Events Concept," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    17. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    2. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    3. Chen, Weixing & Zhou, Boen & Huang, Hao & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2022. "Design, modeling and performance analysis of a deployable WEC for ocean robots," Applied Energy, Elsevier, vol. 327(C).
    4. Reza Jafari & Pedram Asef & Mohammad Ardebili & Mohammad Mahdi Derakhshani, 2022. "Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    5. Tatiana Potapenko & Joseph Burchell & Sandra Eriksson & Irina Temiz, 2021. "Wave Energy Converter’s Slack and Stiff Connection: Study of Absorbed Power in Irregular Waves," Energies, MDPI, vol. 14(23), pages 1-21, November.
    6. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
    7. Silva, R.N. & Nunes, M.M. & Oliveira, F.L. & Oliveira, T.F. & Brasil, A.C.P. & Pinto, M.S.S., 2023. "Dynamical analysis of a novel hybrid oceanic tidal-wave energy converter system," Energy, Elsevier, vol. 263(PD).
    8. Tunde Aderinto & Hua Li, 2020. "Conceptual Design and Simulation of a Self-Adjustable Heaving Point Absorber Based Wave Energy Converter," Energies, MDPI, vol. 13(8), pages 1-15, April.
    9. Zhang, Xiantao & Tian, XinLiang & Xiao, Longfei & Li, Xin & Lu, Wenyue, 2019. "Mechanism and sensitivity for broadband energy harvesting of an adaptive bistable point absorber wave energy converter," Energy, Elsevier, vol. 188(C).
    10. Chen, Weixing & Lin, Xiongsen & Lu, Yunfei & Li, Shaoxun & Wang, Lucai & Zhang, Yongkuang & Gao, Feng, 2023. "Design and experiment of a double-wing wave energy converter," Renewable Energy, Elsevier, vol. 202(C), pages 1497-1506.
    11. Ji Woo Nam & Yong Jun Sung & Seong Wook Cho, 2021. "Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    12. Antonio Mariani & Gaetano Crispino & Pasquale Contestabile & Furio Cascetta & Corrado Gisonni & Diego Vicinanza & Andrea Unich, 2021. "Optimization of Low Head Axial-Flow Turbines for an Overtopping BReakwater for Energy Conversion: A Case Study," Energies, MDPI, vol. 14(15), pages 1-20, July.
    13. Gianmaria Giannini & Paulo Rosa-Santos & Victor Ramos & Francisco Taveira-Pinto, 2020. "On the Development of an Offshore Version of the CECO Wave Energy Converter," Energies, MDPI, vol. 13(5), pages 1-24, February.
    14. Dongsheng Qiao & Rizwan Haider & Jun Yan & Dezhi Ning & Binbin Li, 2020. "Review of Wave Energy Converter and Design of Mooring System," Sustainability, MDPI, vol. 12(19), pages 1-31, October.
    15. Opoku, F. & Uddin, M.N. & Atkinson, M., 2023. "A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    16. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    18. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    19. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    20. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2021. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 2: Experimental validation," Renewable Energy, Elsevier, vol. 171(C), pages 1002-1013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:647-:d:1025955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.