IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8044-d1299406.html
   My bibliography  Save this article

Improvement of Fuzzy Newton Power Flow Convergence

Author

Listed:
  • Ligang Zhao

    (CSG Electric Power Research Institute China Southern Power Grid, Guangzhou 510663, China)

  • Hua Zheng

    (School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Hongyue Zhen

    (CSG Electric Power Research Institute China Southern Power Grid, Guangzhou 510663, China)

  • Li Xie

    (School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Yuan Xu

    (CSG Electric Power Research Institute China Southern Power Grid, Guangzhou 510663, China)

  • Xianchao Huang

    (School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

In order to address the convergence issue in fuzzy power flow calculations, this paper proposes an analytical approach based on the Levenberg–Marquardt method, aiming to improve the convergence of the fuzzy Newton power flow method. Firstly, a detailed analysis is conducted on the convergence theorem and convergence behavior of the fuzzy Newton method, revealing its poor convergence when the initial values are not properly selected. The Levenberg–Marquardt method is then selected as a means to enhance the convergence of the fuzzy Newton power flow calculations, specifically to tackle the problem of initial value deviation. Since the Jacobian matrix has a significant impact on the convergence region of the power flow, this paper reconstructs the Jacobian matrix based on the Levenberg–Marquardt method, effectively enlarging the convergence region. Through validation experiments on the IEEE 118 standard nodes and simulation comparative analysis, the results confirm the method’s effectiveness in resolving the problem of initial value deviation and notably enlarging the convergence region, thereby improving the convergence of power flow calculations.

Suggested Citation

  • Ligang Zhao & Hua Zheng & Hongyue Zhen & Li Xie & Yuan Xu & Xianchao Huang, 2023. "Improvement of Fuzzy Newton Power Flow Convergence," Energies, MDPI, vol. 16(24), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8044-:d:1299406
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8044/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rudy Gianto & Purwoharjono & Fitri Imansyah & Rudi Kurnianto & Danial, 2023. "Steady-State Load Flow Model of DFIG Wind Turbine Based on Generator Power Loss Calculation," Energies, MDPI, vol. 16(9), pages 1-14, April.
    2. Stennikov, Valery & Barakhtenko, Evgeny & Mayorov, Gleb & Sokolov, Dmitry & Zhou, Bin, 2022. "Coordinated management of centralized and distributed generation in an integrated energy system using a multi-agent approach," Applied Energy, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Sun & Hongru Shi & Lei Ren & Jiejie Huang, 2023. "Analysis of Frequency Regulation Capability of Doubly Fed Induction Generator and Supercapacitor Energy Storage Based on Dynamic Power Flow," Energies, MDPI, vol. 16(20), pages 1-17, October.
    2. Victor-Gallardo, Luis & Quirós-Tortós, Jairo, 2023. "Techno-economic comparison of centralized and distributed power generation to support large-scale transport electrification in Costa Rica," Transport Policy, Elsevier, vol. 131(C), pages 120-138.
    3. Guo, Jiacheng & Wu, Di & Wang, Yuanyuan & Wang, Liming & Guo, Hanyuan, 2023. "Co-optimization method research and comprehensive benefits analysis of regional integrated energy system," Applied Energy, Elsevier, vol. 340(C).
    4. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    5. Chutian Yu & Xinyi Lai & Fei Chen & Chenwei Jiang & Yikai Sun & Lijun Zhang & Fushuan Wen & Donglian Qi, 2022. "Multi-Time Period Optimal Dispatch Strategy for Integrated Energy System Considering Renewable Energy Generation Accommodation," Energies, MDPI, vol. 15(12), pages 1-18, June.
    6. Necmi Altin & Süleyman Emre Eyimaya & Adel Nasiri, 2023. "Multi-Agent-Based Controller for Microgrids: An Overview and Case Study," Energies, MDPI, vol. 16(5), pages 1-18, March.
    7. Zheng, Ji-Lu & Zhu, Ya-Hong & Dong, Yan-Yan & Zhu, Ming-Qiang, 2023. "Life cycle water consumption of bio-oil fermentation for bio-ethanol production based on a distributed-centralized model," Energy, Elsevier, vol. 264(C).
    8. Ammar Abbas Majeed & Ahmed Sabri Altaie & Mohamed Abderrahim & Afaneen Alkhazraji, 2023. "A Review of Protection Schemes for Electrical Distribution Networks with Green Distributed Generation," Energies, MDPI, vol. 16(22), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8044-:d:1299406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.