IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7765-d1287481.html
   My bibliography  Save this article

Experimental Study on the Effect of Carbon Graphitization Degree and Pore Structure on the Electrochemical Durability of Gas Diffusion Layers

Author

Listed:
  • Jianan Wang

    (Wuhan Institute of Marine Electric Propulsion, Wuhan 430000, China)

  • Lingfeng Gao

    (Wuhan Institute of Marine Electric Propulsion, Wuhan 430000, China)

  • Tianshu Liao

    (Wuhan Institute of Hydrogen and Fuel Cell Industrial Technology, Wuhan 430000, China)

  • Feng Cheng

    (Wuhan Institute of Hydrogen and Fuel Cell Industrial Technology, Wuhan 430000, China)

  • Daming Zhou

    (School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China)

  • Shiyang Hua

    (Wuhan Institute of Marine Electric Propulsion, Wuhan 430000, China)

Abstract

Gas diffusion layers (GDLs) in high-temperature, high-humidity, and high-electric-potential environments can be affected by the carbon corrosion and degradation of Polytetrafluoroethylene (PTFE) network structures, resulting in reduced reliability and hydrophobicity. By using cyclic voltammetry and offline characterization, a high-potential scanning of 1–1.5 V is applied to the GDL in the three-electrode system, considering the role of gradient graphitization degree and pore size structure in corrosion. Accelerating the electrochemical corrosion process of carbon and PTFE allows the identification of corrosion location, extent, and determinants. The results indicate that after 800 cycles of high-potential triangulation scanning, the graphitization of gas diffusion base has the most significant impact on the GDL’s durability. On the other hand, the durability of the GDL’s microporous layer is influenced by its small pore size structure rather than its graphitization degree. Furthermore, the corrosion process of GDLs with a small pore size structure tends to be relatively slow, providing a basis for GDL selection and durability prediction.

Suggested Citation

  • Jianan Wang & Lingfeng Gao & Tianshu Liao & Feng Cheng & Daming Zhou & Shiyang Hua, 2023. "Experimental Study on the Effect of Carbon Graphitization Degree and Pore Structure on the Electrochemical Durability of Gas Diffusion Layers," Energies, MDPI, vol. 16(23), pages 1-11, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7765-:d:1287481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahgaldi, Samaneh & Alaefour, Ibrahim & Li, Xianguo, 2018. "Impact of manufacturing processes on proton exchange membrane fuel cell performance," Applied Energy, Elsevier, vol. 225(C), pages 1022-1032.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
    2. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    3. Lin, Rui & Diao, Xiaoyu & Ma, Tiancai & Tang, Shenghao & Chen, Liang & Liu, Dengcheng, 2019. "Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design," Applied Energy, Elsevier, vol. 254(C).
    4. Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
    5. Wan, Yue & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer," Applied Energy, Elsevier, vol. 312(C).
    6. Wu, Ziyao & Pei, Pucheng & Xu, Huachi & Jia, Xiaoning & Ren, Peng & Wang, Bozheng, 2019. "Study on the effect of membrane electrode assembly parameters on polymer electrolyte membrane fuel cell performance by galvanostatic charging method," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Rasaki, S.A. & Liu, C. & Lao, C. & Zhang, H. & Chen, Z., 2021. "The innovative contribution of additive manufacturing towards revolutionizing fuel cell fabrication for clean energy generation: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Zarina Turtayeva & Feina Xu & Jérôme Dillet & Kévin Mozet & Régis Peignier & Alain Celzard & Gaël Maranzana, 2023. "The Influence of Ink Formulation and Preparation on the Performance of Proton-Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(22), pages 1-24, November.
    9. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    10. Hou, Yuze & Deng, Hao & Pan, Fengwen & Chen, Wenmiao & Du, Qing & Jiao, Kui, 2019. "Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Polverino, Pierpaolo & Bove, Giovanni & Sorrentino, Marco & Pianese, Cesare & Beretta, Davide, 2019. "Advancements on scaling-up simulation of Proton Exchange Membrane Fuel Cells impedance through Buckingham Pi theorem," Applied Energy, Elsevier, vol. 249(C), pages 245-252.
    12. Miao Ye & Long Rong & Xu Ma & Weiwei Yang, 2023. "Numerical Optimization of Triple-Phase Components in Order-Structured Cathode Catalyst Layer of a Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(4), pages 1-19, February.
    13. Li, Yubai & Zhou, Zhifu & Liu, Xianglei & Wu, Wei-Tao, 2019. "Modeling of PEM fuel cell with thin MEA under low humidity operating condition," Applied Energy, Elsevier, vol. 242(C), pages 1513-1527.
    14. Ozden, Adnan & Shahgaldi, Samaneh & Li, Xianguo & Hamdullahpur, Feridun, 2019. "The impact of ionomer type on the morphological and microstructural degradations of proton exchange membrane fuel cell electrodes under freeze-thaw cycles," Applied Energy, Elsevier, vol. 238(C), pages 1048-1059.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7765-:d:1287481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.