IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7347-d1270893.html
   My bibliography  Save this article

Power Flow in Coupled Three-Row Series-Parallel Planetary Gear System, Part I: Without Power Losses

Author

Listed:
  • Józef Drewniak

    (Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-309 Bielsko-Biala, Poland)

  • Tomasz Kądziołka

    (Faculty of Engineering Sciences, University of Applied Sciences, 33-300 Nowy Sącz, Poland)

  • Jacek Rysiński

    (Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-309 Bielsko-Biala, Poland)

  • Konrad Stańco

    (Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-309 Bielsko-Biala, Poland)

Abstract

So far it is believed that, for every series-parallel planetary gear system (PGS), as a coupled gear, a very harmful phenomenon of power circulation must occur in at least one of its closed circuits. In this paper (Part I) and in the next two (Part II and Part III), it will be shown that it is possible to construct a three-row series-parallel PGS in which this phenomenon can be avoided. For this purpose, in Part I, a detailed analysis of the kinematics and statics of a planetary gear with power circulation inside a closed loop was carried out. The determination of the angular velocities of gears and carriers is carried out using Willis formulas and the graphical-analytical method (for verification), while the torques are determined using free body diagrams. The magnitudes of angular velocities and torques were used to determine the directions of power flows with improved energy balance equations in the reference frame related to the stationary gear body and, additionally, only to verify the energy balance equation in the mobile reference frame related to the carrier h i ( i = 2 , 5 , 8 ). The improvement of the methods was based on the use of the original concept of distinguishing active torque from reactive torque, as well as active power from reactive power, which made it very easy to determine the directions of the power flow. The determined paths of the power flow, including the power circulation in the analysed PGS, are presented graphically.

Suggested Citation

  • Józef Drewniak & Tomasz Kądziołka & Jacek Rysiński & Konrad Stańco, 2023. "Power Flow in Coupled Three-Row Series-Parallel Planetary Gear System, Part I: Without Power Losses," Energies, MDPI, vol. 16(21), pages 1-37, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7347-:d:1270893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7347/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7347/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shima Nazari & Jason Siegel & Robert Middleton & Anna Stefanopoulou, 2020. "Power Split Supercharging: A Mild Hybrid Approach to Boost Fuel Economy," Energies, MDPI, vol. 13(24), pages 1-17, December.
    2. Cipek, Mihael & Pavković, Danijel & Petrić, Joško, 2013. "A control-oriented simulation model of a power-split hybrid electric vehicle," Applied Energy, Elsevier, vol. 101(C), pages 121-133.
    3. Mangialardi, L. & Mantriota, G., 1992. "The advantages of using continuously variable transmissions in wind power systems," Renewable Energy, Elsevier, vol. 2(3), pages 201-209.
    4. Yong Zhang & Xuerui Ma & Chengliang Yin & Shifei Yuan, 2016. "Development and Simulation of a Type of Four-Shaft ECVT for a Hybrid Electric Vehicle," Energies, MDPI, vol. 9(3), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danijel Pavković & Mihael Cipek & Filip Plavac & Juraj Karlušić & Matija Krznar, 2022. "Internal Combustion Engine Starting and Torque Boosting Control System Design with Vibration Active Damping Features for a P0 Mild Hybrid Vehicle Configuration," Energies, MDPI, vol. 15(4), pages 1-24, February.
    2. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    3. Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
    4. Mansouri, M.N. & Mimouni, M.F. & Benghanem, B. & Annabi, M., 2004. "Simulation model for wind turbine with asynchronous generator interconnected to the electric network," Renewable Energy, Elsevier, vol. 29(3), pages 421-431.
    5. Bedatri Moulik & Dirk Söffker, 2015. "Optimal Rule-Based Power Management for Online, Real-Time Applications in HEVs with Multiple Sources and Objectives: A Review," Energies, MDPI, vol. 8(9), pages 1-15, August.
    6. Massimiliano Passalacqua & Mauro Carpita & Serge Gavin & Mario Marchesoni & Matteo Repetto & Luis Vaccaro & Sébastien Wasterlain, 2019. "Supercapacitor Storage Sizing Analysis for a Series Hybrid Vehicle," Energies, MDPI, vol. 12(9), pages 1-15, May.
    7. Matija Krznar & Petar Piljek & Denis Kotarski & Danijel Pavković, 2021. "Modeling, Control System Design and Preliminary Experimental Verification of a Hybrid Power Unit Suitable for Multirotor UAVs," Energies, MDPI, vol. 14(9), pages 1-24, May.
    8. Francis F. Assadian, 2022. "Advanced Control and Estimation Concepts and New Hardware Topologies for Future Mobility," Energies, MDPI, vol. 15(4), pages 1-3, February.
    9. Carbone, Giuseppe & Afferrante, Luciano, 2013. "A novel probabilistic approach to assess the blade throw hazard of wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 474-481.
    10. Mangialardi, L. & Mantriota, G., 1994. "Continuously variable transmissions with torque-sensing regulators in waterpumping windmills," Renewable Energy, Elsevier, vol. 4(7), pages 807-823.
    11. Francesco Bottiglione & Giacomo Mantriota & Marco Valle, 2018. "Power-Split Hydrostatic Transmissions for Wind Energy Systems," Energies, MDPI, vol. 11(12), pages 1-15, December.
    12. Chaoying Xia & Cong Zhang, 2015. "Power Management Strategy of Hybrid Electric Vehicles Based on Quadratic Performance Index," Energies, MDPI, vol. 8(11), pages 1-16, November.
    13. Ouyang, Minggao & Zhang, Weilin & Wang, Enhua & Yang, Fuyuan & Li, Jianqiu & Li, Zhongyan & Yu, Ping & Ye, Xiao, 2015. "Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors," Applied Energy, Elsevier, vol. 157(C), pages 595-606.
    14. Shi, Dehua & Pisu, Pierluigi & Chen, Long & Wang, Shaohua & Wang, Renguang, 2016. "Control design and fuel economy investigation of power split HEV with energy regeneration of suspension," Applied Energy, Elsevier, vol. 182(C), pages 576-589.
    15. Hou, Cong & Ouyang, Minggao & Xu, Liangfei & Wang, Hewu, 2014. "Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 115(C), pages 174-189.
    16. Zhu, Wenhua H. & Zhu, Ying & Davis, Zenda & Tatarchuk, Bruce J., 2013. "Energy efficiency and capacity retention of Ni–MH batteries for storage applications," Applied Energy, Elsevier, vol. 106(C), pages 307-313.
    17. Mangialardi, L. & Mantriota, G., 1994. "Automatically regulated C.V.T. in wind power systems," Renewable Energy, Elsevier, vol. 4(3), pages 299-310.
    18. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    19. Weiwei Yang & Jiejunyi Liang & Jue Yang & Nong Zhang, 2018. "Investigation of a Novel Coaxial Power-Split Hybrid Powertrain for Mining Trucks," Energies, MDPI, vol. 11(1), pages 1-18, January.
    20. Zhuang, Weichao & Zhang, Xiaowu & Ding, Yang & Wang, Liangmo & Hu, Xiaosong, 2016. "Comparison of multi-mode hybrid powertrains with multiple planetary gears," Applied Energy, Elsevier, vol. 178(C), pages 624-632.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7347-:d:1270893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.