IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6256-d1227347.html
   My bibliography  Save this article

Simple Empirical Relation for an Evacuated-Tube Solar Collector Performance Prediction from Solar Intensity

Author

Listed:
  • Nattapat Pongboriboon

    (Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
    Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan)

  • Wei Wu

    (Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan)

  • Walairat Chandra-ambhorn

    (Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Patthranit Wongpromrat

    (Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Eakarach Bumrungthaichaichan

    (Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

Abstract

In this paper, the effect of solar intensity on the heat pipe tip temperature in a heat pipe type—evacuated-tube solar collector (HP-ETSC) was investigated. A simple relation was proposed, relating the solar intensity to the heat pipe tip temperature generated from the experimental data. This simple empirical relation was applied in a set of heat transfer equations derived to predict the heating medium temperature at the manifold outlet of the evacuated-tube solar collector. The calculated results corresponding to two types of heating medium, i.e., palm oil and water, were compared with experimental results from the literature. The results show that the average error was 6.41% for the case of palm oil and 4.66% for the case of water. Based on the case of water as a heating medium fluid, it was found that the flow rate of the heating medium fluid affected the accuracy of prediction, as the percentage error increased with the heating medium flow rate. The maximum percentage error increased from only 1.83% for a water inlet flowing at a Reynolds number of about 2.4 × 10 3 to 15.23% for a water flow rate at a Reynolds number of about 2.6 × 10 4 . The correction factor was added into the correlation to predict the heat transfer coefficients of heating medium fluids. With this correction factor, the maximum error could be reduced from 11.78% to 7.29% for the palm oil case and from 15.23% to 5.57% for the water case. The average errors corresponding to palm oil and water cases could be reduced to 0.74% and 1.26%, respectively.

Suggested Citation

  • Nattapat Pongboriboon & Wei Wu & Walairat Chandra-ambhorn & Patthranit Wongpromrat & Eakarach Bumrungthaichaichan, 2023. "Simple Empirical Relation for an Evacuated-Tube Solar Collector Performance Prediction from Solar Intensity," Energies, MDPI, vol. 16(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6256-:d:1227347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heyhat, M.M. & Valizade, M. & Abdolahzade, Sh. & Maerefat, M., 2020. "Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam," Energy, Elsevier, vol. 192(C).
    2. Shah, L. J. & Furbo, S., 2004. "Vertical evacuated tubular-collectors utilizing solar radiation from all directions," Applied Energy, Elsevier, vol. 78(4), pages 371-395, August.
    3. Julian Schumann & Bert Schiebler & Federico Giovannetti, 2021. "Performance Evaluation of an Evacuated Tube Collector with a Low-Cost Diffuse Reflector," Energies, MDPI, vol. 14(24), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    3. Ahbabi Saray, Jabraeil & Heyhat, Mohammad Mahdi, 2022. "Modeling of a direct absorption parabolic trough collector based on using nanofluid: 4E assessment and water-energy nexus analysis," Energy, Elsevier, vol. 244(PB).
    4. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    5. Chen, Xiaomeng & Wang, Yang & Yang, Xudong, 2023. "New biaxial approach to evaluate the optical performance of evacuated tube solar thermal collector," Energy, Elsevier, vol. 271(C).
    6. Kulkarni, Vismay V. & Bhalla, Vishal & Garg, Kapil & Tyagi, Himanshu, 2021. "Hybrid nanoparticles-laden fluid based spiral solar collector: A proof-of-concept experimental study," Renewable Energy, Elsevier, vol. 179(C), pages 1360-1369.
    7. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    8. Esteban Zalamea-Leon & Edgar A. Barragán-Escandón & John Calle-Sigüencia & Mateo Astudillo-Flores & Diego Juela-Quintuña, 2021. "Residential Solar Thermal Performance Considering Self-Shading Incidence between Tubes in Evacuated Tube and Flat Plate Collectors," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    9. Heyhat, Mohammad Mahdi & Zahi Khattar, Murtadha, 2023. "On the effect of different placement schemes of metal foam as volumetric absorber on the thermal performance of a direct absorption parabolic trough solar collector," Energy, Elsevier, vol. 266(C).
    10. Joseph, Albin & Sreekumar, Sreehari & Thomas, Shijo, 2020. "Energy and exergy analysis of SiO2/Ag-CuO plasmonic nanofluid on direct absorption parabolic solar collector," Renewable Energy, Elsevier, vol. 162(C), pages 1655-1664.
    11. Nkwetta, Dan Nchelatebe & Smyth, Mervyn, 2012. "Performance analysis and comparison of concentrated evacuated tube heat pipe solar collectors," Applied Energy, Elsevier, vol. 98(C), pages 22-32.
    12. Mao, Chunliu & Li, Muran & Li, Na & Shan, Ming & Yang, Xudong, 2019. "Mathematical model development and optimal design of the horizontal all-glass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting," Applied Energy, Elsevier, vol. 238(C), pages 54-68.
    13. Norouzi, Amir Mohammad & Siavashi, Majid & Ahmadi, Rouhollah & Tahmasbi, Milad, 2021. "Experimental study of a parabolic trough solar collector with rotating absorber tube," Renewable Energy, Elsevier, vol. 168(C), pages 734-749.
    14. Shaaban, S., 2021. "Enhancement of the solar trough collector efficiency by optimizing the reflecting mirror profile," Renewable Energy, Elsevier, vol. 176(C), pages 40-49.
    15. Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
    16. Tagliafico, Luca A. & Scarpa, Federico & De Rosa, Mattia, 2014. "Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 526-537.
    17. Fiaschi, Daniele & Manfrida, Giampaolo, 2013. "Model to predict design parameters and performance curves of vacuum glass heat pipe solar collectors," Energy, Elsevier, vol. 58(C), pages 28-35.
    18. Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K., 2012. "Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1383-1398.
    19. Tierney, M.J., 2007. "Options for solar-assisted refrigeration—Trough collectors and double-effect chillers," Renewable Energy, Elsevier, vol. 32(2), pages 183-199.
    20. Murtadha Zahi Khattar & Mohammad Mahdi Heyhat, 2022. "Exergy, Economic and Environmental Analysis of a Direct Absorption Parabolic Trough Collector Filled with Porous Metal Foam," Energies, MDPI, vol. 15(21), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6256-:d:1227347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.