IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5658-d1204100.html
   My bibliography  Save this article

Optimal Capacity of a Battery Energy Storage System Based on Solar Variability Index to Smooth out Power Fluctuations in PV-Diesel Microgrids

Author

Listed:
  • Julius Susanto

    (Australian Energy Market Commission (AEMC), Perth 6000, Australia
    School of Engineering and Energy, Murdoch University, Perth 6150, Australia)

  • Farhad Shahnia

    (School of Engineering and Energy, Murdoch University, Perth 6150, Australia)

Abstract

Battery energy storage systems can be integrated with photovoltaic (PV)-diesel microgrids as an enabling technology to increase the penetration of PV systems and aid microgrid stability by smoothing out the power fluctuations of the PV systems. This paper focuses on this topic and aims to derive correlations between the optimal capacity of the smoothing batteries and variabilities in the daily solar irradiance. To this end, the two most commonly used moving average and ramp rate control techniques are employed on a real solar irradiance dataset with a 1-min resolution for a full calendar year across 11 sites in Australia. The paper then presents the developed empirical model, based on linear regressions, to estimate the batteries’ optimal capacity without requiring detailed simulation studies, which are useful for practitioners at the early stages of a project’s feasibility evaluation. The performance of the developed technique is validated through numerical simulation studies in MATLAB ® . The study demonstrates that the empirical model provided reasonably accurate estimates when using the moving average smoothing technique but had limited accuracy under the ramp rate control technique.

Suggested Citation

  • Julius Susanto & Farhad Shahnia, 2023. "Optimal Capacity of a Battery Energy Storage System Based on Solar Variability Index to Smooth out Power Fluctuations in PV-Diesel Microgrids," Energies, MDPI, vol. 16(15), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5658-:d:1204100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susanto, Julius & Shahnia, Farhad & Ludwig, David, 2018. "A framework to technically evaluate integration of utility-scale photovoltaic plants to weak power distribution systems," Applied Energy, Elsevier, vol. 231(C), pages 207-221.
    2. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    2. Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
    3. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    4. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2023. "Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO 2 Emissions," Mathematics, MDPI, vol. 11(7), pages 1-23, March.
    5. Tao Xu & He Meng & Jie Zhu & Wei Wei & He Zhao & Han Yang & Zijin Li & Yuhan Wu, 2021. "Optimal Capacity Allocation of Energy Storage in Distribution Networks Considering Active/Reactive Coordination," Energies, MDPI, vol. 14(6), pages 1-24, March.
    6. Francesco Lo Franco & Antonio Morandi & Pietro Raboni & Gabriele Grandi, 2021. "Efficiency Comparison of DC and AC Coupling Solutions for Large-Scale PV+BESS Power Plants," Energies, MDPI, vol. 14(16), pages 1-22, August.
    7. Saranchimeg, Sainbold & Nair, Nirmal K.C., 2021. "A novel framework for integration analysis of large-scale photovoltaic plants into weak grids," Applied Energy, Elsevier, vol. 282(PA).
    8. Jose-Maria Delgado-Sanchez & Isidoro Lillo-Bravo, 2020. "Influence of Degradation Processes in Lead–Acid Batteries on the Technoeconomic Analysis of Photovoltaic Systems," Energies, MDPI, vol. 13(16), pages 1-28, August.
    9. Negri, Simone & Giani, Federico & Blasuttigh, Nicola & Massi Pavan, Alessandro & Mellit, Adel & Tironi, Enrico, 2022. "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," Renewable Energy, Elsevier, vol. 198(C), pages 440-454.
    10. AlSkaif, Tarek & Dev, Soumyabrata & Visser, Lennard & Hossari, Murhaf & van Sark, Wilfried, 2020. "A systematic analysis of meteorological variables for PV output power estimation," Renewable Energy, Elsevier, vol. 153(C), pages 12-22.
    11. Abdar, Moloud & Basiri, Mohammad Ehsan & Yin, Junjun & Habibnezhad, Mahmoud & Chi, Guangqing & Nemati, Shahla & Asadi, Somayeh, 2020. "Energy choices in Alaska: Mining people's perception and attitudes from geotagged tweets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    12. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    13. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    14. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    15. Zhang, Shixu & Li, Yaowang & Du, Ershun & Fan, Chuan & Wu, Zhenlong & Yao, Yong & Liu, Lurao & Zhang, Ning, 2023. "A review and outlook on cloud energy storage: An aggregated and shared utilizing method of energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    16. Bauwens, Thomas & Schraven, Daan & Drewing, Emily & Radtke, Jörg & Holstenkamp, Lars & Gotchev, Boris & Yildiz, Özgür, 2022. "Conceptualizing community in energy systems: A systematic review of 183 definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Arcos-Vargas, Ángel & Canca, David & Núñez, Fernando, 2020. "Impact of battery technological progress on electricity arbitrage: An application to the Iberian market," Applied Energy, Elsevier, vol. 260(C).
    18. Núñez, Fernando & Canca, David & Arcos-Vargas, Ángel, 2022. "An assessment of European electricity arbitrage using storage systems," Energy, Elsevier, vol. 242(C).
    19. Mustika, Alyssa Diva & Rigo-Mariani, Rémy & Debusschere, Vincent & Pachurka, Amaury, 2022. "A two-stage management strategy for the optimal operation and billing in an energy community with collective self-consumption," Applied Energy, Elsevier, vol. 310(C).
    20. Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Brandon Cortés-Caicedo & Jhon Montano & Andrés Alfonso Rosales-Muñoz & Marco Rivera, 2022. "Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5658-:d:1204100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.