IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5398-d1194805.html
   My bibliography  Save this article

Microbial Oil Production from Alkali Pre-Treated Giant Reed ( Arundo donax L.) by Selected Fungi

Author

Listed:
  • Stefano Cianchetta

    (Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, Via di Corticella 133, 40128 Bologna, Italy)

  • Enrico Ceotto

    (Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics, Via Beccastecca 345, 41018 San Cesario sul Panaro, Italy)

  • Stefania Galletti

    (Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, Via di Corticella 133, 40128 Bologna, Italy)

Abstract

This study aimed to evaluate the microbial oil production by three selected strains, Mortierella isabellina , Cunninghamella echinulata , and Thamnidium elegans , after fermentation of an enzymatic hydrolysate from alkali pre-treated giant reed biomass, in comparison to a semi-synthetic medium, at three increasing nitrogen supplementation levels (0.14, 0.25, and 0.47 g/L). M. isabellina showed the fastest sugar consumption, the highest final cell and oil concentrations (10.9 and 5.6 g/L, respectively), as well as the highest cellular oil content, oil yield/g sugar consumed, and oil productivity (63.4%, 0.19 g/g, and 1 g/L/day, respectively) in the giant reed hydrolysate. The oil yield tended to decrease with an increasing nitrogen content in the cultures. Oleic acid was the most copious fatty acid in the oil for all the fungi. On the contrary, T. elegans exhibited the poorest performances. In particular, M. isabellina showed, respectively, the highest and lowest values of oleic and γ-linolenic acid (52.2 and 3.1%, on average). In comparison, C. echinulata and T. elegans showed much higher γ-linolenic acid content (15.3 and 21.6%, on average). Notably, the C. echinulata cultures showed by far the highest γ-linolenic acid concentration in both substrates (345 and 595 g/L in the giant reed hydrolysate and in the synthetic medium, respectively). Finally, the estimated biodiesel properties of all the oils fell within the limits of the U.S. standards, while the oil of M. isabellina only respected the tighter limits fixed by the E.U. regulations.

Suggested Citation

  • Stefano Cianchetta & Enrico Ceotto & Stefania Galletti, 2023. "Microbial Oil Production from Alkali Pre-Treated Giant Reed ( Arundo donax L.) by Selected Fungi," Energies, MDPI, vol. 16(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5398-:d:1194805
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ciro Vasmara & Stefano Cianchetta & Rosa Marchetti & Enrico Ceotto & Stefania Galletti, 2022. "Hydrogen Production from Enzymatic Hydrolysates of Alkali Pre-Treated Giant Reed ( Arundo donax L.)," Energies, MDPI, vol. 15(13), pages 1-17, July.
    2. Pirozzi, Domenico & Fiorentino, Nunzio & Impagliazzo, Adriana & Sannino, Filomena & Yousuf, Abu & Zuccaro, Gaetano & Fagnano, Massimo, 2015. "Lipid production from Arundo donax grown under different agronomical conditions," Renewable Energy, Elsevier, vol. 77(C), pages 456-462.
    3. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anderson Breno Souza & Alvaro Antonio Villa Ochoa & José Ângelo Peixoto da Costa & Gustavo de Novaes Pires Leite & Héber Claudius Nunes Silva & Andrezza Carolina Carneiro Tómas & David Campos Barbosa , 2023. "A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution?," Energies, MDPI, vol. 16(9), pages 1-25, April.
    2. Rahmath Abdulla & Eryati Derman & Thivyasri K.Mathialagan & Abu Zahrim Yaser & Mohd Armi Abu Samah & Jualang Azlan Gansau & Syed Umar Faruq Syed Najmuddin, 2022. "Biodiesel Production from Waste Palm Cooking Oil Using Immobilized Candida rugosa Lipase," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    3. Ariodillah Hidayat & Bernadette Robiani & Taufiq Marwa & Suhel Suhel, 2023. "Competitiveness, Market Structure, and Energy Policies: A Case Study of the World s Largest Crude Palm Oil Exporter," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 111-121, May.
    4. Jakub Čedík & Martin Pexa & Michal Holúbek & Zdeněk Aleš & Radek Pražan & Peter Kuchar, 2020. "Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine," Energies, MDPI, vol. 13(15), pages 1-16, July.
    5. Shehu, Basiru Gwandu & Clarke, Michèle L., 2020. "Successful and sustainable crop based biodiesel programme in Nigeria through ecological optimisation and intersectoral policy realignment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Ho Young Kim & Jun Cong Ge & Nag Jung Choi, 2019. "Effects of Fuel Injection Pressure on Combustion and Emission Characteristics under Low Speed Conditions in a Diesel Engine Fueled with Palm Oil Biodiesel," Energies, MDPI, vol. 12(17), pages 1-14, August.
    7. Karim, Ahasanul & Islam, M. Amirul & Khalid, Zaied Bin & Yousuf, Abu & Khan, Md. Maksudur Rahman & Mohammad Faizal, Che Ku, 2021. "Microbial lipid accumulation through bioremediation of palm oil mill effluent using a yeast-bacteria co-culture," Renewable Energy, Elsevier, vol. 176(C), pages 106-114.
    8. Giuseppe Toscano & Gaetano Zuccaro & Anna Corsini & Sarah Zecchin & Lucia Cavalca, 2023. "Dark Fermentation of Arundo donax: Characterization of the Anaerobic Microbial Consortium," Energies, MDPI, vol. 16(4), pages 1-16, February.
    9. Jakub Čedík & Martin Pexa & Michal Holúbek & Jaroslav Mrázek & Hardikk Valera & Avinash Kumar Agarwal, 2021. "Operational Parameters of a Diesel Engine Running on Diesel–Rapeseed Oil–Methanol–Iso-Butanol Blends," Energies, MDPI, vol. 14(19), pages 1-24, September.
    10. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    11. Jason Yi Juang Yeo & Bing Shen How & Sin Yong Teng & Wei Dong Leong & Wendy Pei Qin Ng & Chun Hsion Lim & Sue Lin Ngan & Jaka Sunarso & Hon Loong Lam, 2020. "Synthesis of Sustainable Circular Economy in Palm Oil Industry Using Graph-Theoretic Method," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    12. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    13. A. Alcantara & F. J. Lopez-Gimenez & M. P. Dorado, 2020. "Universal Kinetic Model to Simulate Two-Step Biodiesel Production from Vegetable Oil," Energies, MDPI, vol. 13(11), pages 1-15, June.
    14. B. T. Ramesh & Javed Sayyad & Arunkumar Bongale & Anupkumar Bongale, 2022. "Extraction and Performance Analysis of Hydrocarbons from Waste Plastic Using the Pyrolysis Process," Energies, MDPI, vol. 15(24), pages 1-10, December.
    15. Impha Yalagudige Dharmegowda & Lakshmidevamma Madarakallu Muniyappa & Parameshwara Siddalingaiah & Ajith Bintravalli Suresh & Manjunath Patel Gowdru Chandrashekarappa & Chander Prakash, 2022. "MgO Nano-Catalyzed Biodiesel Production from Waste Coconut Oil and Fish Oil Using Response Surface Methodology and Grasshopper Optimization," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    16. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    17. Nesma M. Helal & Hesham F. Alharby & Basmah M. Alharbi & Atif. A. Bamagoos & Ahmed M. Hashim, 2020. "Thymelaea hirsuta and Echinops spinosus : Xerophytic Plants with High Potential for First-Generation Biodiesel Production," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    18. Batara Surya & Andi Muhibuddin & Seri Suriani & Emil Salim Rasyidi & Baharuddin Baharuddin & Andi Tenri Fitriyah & Herminawaty Abubakar, 2021. "Economic Evaluation, Use of Renewable Energy, and Sustainable Urban Development Mamminasata Metropolitan, Indonesia," Sustainability, MDPI, vol. 13(3), pages 1-45, January.
    19. Ciro Vasmara & Stefania Galletti & Stefano Cianchetta & Enrico Ceotto, 2023. "Advancements in Giant Reed ( Arundo donax L.) Biomass Pre-Treatments for Biogas Production: A Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    20. Shir Reen Chia & Saifuddin Nomanbhay & Kit Wayne Chew & Pau Loke Show & Jassinnee Milano & Abd Halim Shamsuddin, 2022. "Indigenous Materials as Catalyst Supports for Renewable Diesel Production in Malaysia," Energies, MDPI, vol. 15(8), pages 1-31, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5398-:d:1194805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.