Solar Salt above 600 °C: Impact of Experimental Design on Thermodynamic Stability Results
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wei, Xiaolan & Yang, Chuntao & Lu, Jianfeng & Wang, Weilong & Ding, Jing, 2017. "The mechanism of NOx emissions from binary molten nitrate salts contacting nickel base alloy in thermal energy storage process," Applied Energy, Elsevier, vol. 207(C), pages 265-273.
- Bauer, Thomas & Pfleger, Nicole & Breidenbach, Nils & Eck, Markus & Laing, Doerte & Kaesche, Stefanie, 2013. "Material aspects of Solar Salt for sensible heat storage," Applied Energy, Elsevier, vol. 111(C), pages 1114-1119.
- Wei, Xiaolan & Wang, Yan & Peng, Qiang & Yang, Jianping & Yang, Xiaoxi & Ding, Jing, 2014. "NOx emissions and NO2- formation in thermal energy storage process of binary molten nitrate salts," Energy, Elsevier, vol. 74(C), pages 215-221.
- Villada, Carolina & Bonk, Alexander & Bauer, Thomas & Bolívar, Francisco, 2018. "High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres," Applied Energy, Elsevier, vol. 226(C), pages 107-115.
- Yang, Chuntao & Wei, Xiaolan & Wang, Weilong & Lin, Zihao & Ding, Jing & Wang, Yan & Peng, Qiang & Yang, Jianping, 2016. "NOx emissions and the component changes of ternary molten nitrate salts in thermal energy storage process," Applied Energy, Elsevier, vol. 184(C), pages 346-352.
- Bonk, Alexander & Braun, Markus & Sötz, Veronika A. & Bauer, Thomas, 2020. "Solar Salt – Pushing an old material for energy storage to a new limit," Applied Energy, Elsevier, vol. 262(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xue, Xue & Zhu, Yifan & Liu, Xiang & Zhu, Ying & Yuan, Lei & Zhang, Ao & Wu, Yajie & Zhang, Lei & Jin, Kelang & Zhou, Hao, 2024. "1.05 MW molten salt furnace experimental investigation of full-conditional thermal energy storage for the transfer and storage of waste heat from blast furnace gas," Renewable Energy, Elsevier, vol. 231(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei, Xiaolan & Qin, Bo & Yang, Chuntao & Wang, Weilong & Ding, Jing & Wang, Yan & Peng, Qiang, 2019. "Nox emission of ternary nitrate molten salts in high-temperature heat storage and transfer process," Applied Energy, Elsevier, vol. 236(C), pages 147-154.
- Han, Yan & Zhang, Cancan & Wu, Yuting & Lu, Yuanwei, 2021. "Investigation on thermal performance of quaternary nitrate-nitrite mixed salt and solar salt under thermal shock condition," Renewable Energy, Elsevier, vol. 175(C), pages 1041-1051.
- Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
- Wei, Xiaolan & Yang, Chuntao & Lu, Jianfeng & Wang, Weilong & Ding, Jing, 2017. "The mechanism of NOx emissions from binary molten nitrate salts contacting nickel base alloy in thermal energy storage process," Applied Energy, Elsevier, vol. 207(C), pages 265-273.
- Villada, Carolina & Bonk, Alexander & Bauer, Thomas & Bolívar, Francisco, 2018. "High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres," Applied Energy, Elsevier, vol. 226(C), pages 107-115.
- Marc Majó & Adela Svobodova-Sedlackova & Ana Inés Fernández & Alejandro Calderón & Camila Barreneche, 2024. "Thermal Cycling Test of Solar Salt in Contact with Sustainable Solid Particles for Concentrating Solar Power (CSP) Plants," Energies, MDPI, vol. 17(10), pages 1-9, May.
- Mohammad, Mehedi Bin & Brooks, Geoffrey Alan & Rhamdhani, M. Akbar, 2017. "Thermal analysis of molten ternary lithium-sodium-potassium nitrates," Renewable Energy, Elsevier, vol. 104(C), pages 76-87.
- Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
- Sau, S. & Corsaro, N. & Crescenzi, T. & D’Ottavi, C. & Liberatore, R. & Licoccia, S. & Russo, V. & Tarquini, P. & Tizzoni, A.C., 2016. "Techno-economic comparison between CSP plants presenting two different heat transfer fluids," Applied Energy, Elsevier, vol. 168(C), pages 96-109.
- Du, Lichan & Ding, Jing & Tian, Heqing & Wang, Weilong & Wei, Xiaolan & Song, Ming, 2017. "Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process," Applied Energy, Elsevier, vol. 204(C), pages 1225-1230.
- Yang, He & Li, Jinduo & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2023. "Dynamic performance for discharging process of pumped thermal electricity storage with reversible Brayton cycle," Energy, Elsevier, vol. 263(PD).
- Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
- Wang, Yuanyuan & Wang, Zixuan & Lu, Yuanwei & Wu, Yuting & Zhang, Cancan, 2025. "Phase diagram calculation and neural network prediction of nitrate/nitrite molten salts with wide working temperature range for thermal storage system," Energy, Elsevier, vol. 322(C).
- Gravogl, Georg & Knoll, Christian & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Harasek, Michael & Hradil, Klaudia & Werner, Andreas & Weinberger, Peter & Müller, D, 2019. "Pressure effects on the carbonation of MeO (Me = Co, Mn, Pb, Zn) for thermochemical energy storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Zhang, P. & Xiao, X. & Meng, Z.N. & Li, M., 2015. "Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement," Applied Energy, Elsevier, vol. 137(C), pages 758-772.
- Barreneche, Camila & Fernández, Ana Inés & Cabeza, Luisa F. & Cuypers, Ruud, 2015. "Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite," Applied Energy, Elsevier, vol. 137(C), pages 726-730.
- Vigneshwaran, K. & Sodhi, Gurpreet Singh & Muthukumar, P. & Guha, Anurag & Senthilmurugan, S., 2019. "Experimental and numerical investigations on high temperature cast steel based sensible heat storage system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
- Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
- Kondaiah, P. & Pitchumani, R., 2023. "Progress and opportunities in corrosion mitigation in heat transfer fluids for next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 205(C), pages 956-991.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5241-:d:1189560. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.