IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5147-d1186239.html
   My bibliography  Save this article

Experimental Study of the Transient Behavior of a Wind Turbine Wake Following Yaw Actuation

Author

Listed:
  • Derek Micheletto

    (Department of Engineering Mechanics, KTH Royal Institute of Technology, 11428 Stockholm, Sweden)

  • Jens H. M. Fransson

    (Department of Engineering Mechanics, KTH Royal Institute of Technology, 11428 Stockholm, Sweden)

  • Antonio Segalini

    (Department of Earth Sciences, Uppsala University, 75236 Uppsala, Sweden)

Abstract

Wind tunnel experiments were performed to investigate the response of a wind turbine model immersed in a replicated atmospheric boundary layer to dynamic changes in the yaw angle. Both the flow field in the wake and the operating properties of the turbine, namely its thrust force, torque, and angular velocity, were monitored during repeated yaw maneuvers for a variety of yaw angles. It was observed that the characteristic time scale of the transient experienced by the turbine scalar quantities was one order of magnitude larger than that of the yaw actuation and depended primarily on the inertia of the rotor and the generator. Furthermore, a Morlet wavelet analysis of the thrust signal showed a strong peak at the rotation frequency of the turbine, with the transient emergence of high activity at a lower frequency during the yaw maneuver. The insights provided by the proper orthogonal decomposition analysis performed on the wake velocity data enabled the development of a simple reduced-order model for the transient in the flow field based on the stationary states before and after the yaw maneuver. This model was then further improved to require only the final state, extending its applicability to any arbitrary wind farm as a dynamical surrogate of the farm behavior.

Suggested Citation

  • Derek Micheletto & Jens H. M. Fransson & Antonio Segalini, 2023. "Experimental Study of the Transient Behavior of a Wind Turbine Wake Following Yaw Actuation," Energies, MDPI, vol. 16(13), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5147-:d:1186239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Mazzeo & Derek Micheletto & Alessandro Talamelli & Antonio Segalini, 2022. "An Experimental Study on a Wind Turbine Rotor Affected by Pitch Imbalance," Energies, MDPI, vol. 15(22), pages 1-16, November.
    2. Ebrahimi, Abbas & Sekandari, Mahmood, 2018. "Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes," Energy, Elsevier, vol. 145(C), pages 261-275.
    3. Abraham, Aliza & Hong, Jiarong, 2020. "Dynamic wake modulation induced by utility-scale wind turbine operation," Applied Energy, Elsevier, vol. 257(C).
    4. Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).
    5. Wim Munters & Johan Meyers, 2018. "Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization," Energies, MDPI, vol. 11(1), pages 1-32, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Frederik, Joeri A. & van Wingerden, Jan-Willem, 2022. "On the load impact of dynamic wind farm wake mixing strategies," Renewable Energy, Elsevier, vol. 194(C), pages 582-595.
    4. Jacob R. West & Sanjiva K. Lele, 2020. "Wind Turbine Performance in Very Large Wind Farms: Betz Analysis Revisited," Energies, MDPI, vol. 13(5), pages 1-25, March.
    5. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    6. van den Broek, Maarten J. & De Tavernier, Delphine & Sanderse, Benjamin & van Wingerden, Jan-Willem, 2022. "Adjoint optimisation for wind farm flow control with a free-vortex wake model," Renewable Energy, Elsevier, vol. 201(P1), pages 752-765.
    7. Chen, Zhenyu & Lin, Zhongwei & Zhai, Xiaoya & Liu, Jizhen, 2022. "Dynamic wind turbine wake reconstruction: A Koopman-linear flow estimator," Energy, Elsevier, vol. 238(PB).
    8. Mou Lin & Fernando Porté-Agel, 2023. "Power Production and Blade Fatigue of a Wind Turbine Array Subjected to Active Yaw Control," Energies, MDPI, vol. 16(6), pages 1-17, March.
    9. Aditya H. Bhatt & Mireille Rodrigues & Federico Bernardoni & Stefano Leonardi & Armin Zare, 2023. "Stochastic Dynamical Modeling of Wind Farm Turbulence," Energies, MDPI, vol. 16(19), pages 1-24, September.
    10. Daniel Houck & Edwin A. Cowen, 2022. "Power and Flow Analysis of Axial Induction Control in an Array of Model-Scale Wind Turbines," Energies, MDPI, vol. 15(15), pages 1-27, July.
    11. Abdelmoumen Saci & Mohamed Nadour & Lakhmissi Cherroun & Ahmed Hafaifa & Abdellah Kouzou & Jose Rodriguez & Mohamed Abdelrahem, 2024. "Condition Monitoring Using Digital Fault-Detection Approach for Pitch System in Wind Turbines," Energies, MDPI, vol. 17(16), pages 1-35, August.
    12. Hodgson, Emily Louise & Troldborg, Niels & Andersen, Søren Juhl, 2025. "Impact of freestream turbulence integral length scale on wind farm flows and power generation," Renewable Energy, Elsevier, vol. 238(C).
    13. Song, Dongran & Shen, Xutao & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Huang, Chaoneng & Yang, Jian & Dong, Mi & Joo, Young Hoo, 2023. "Application of surrogate-assisted global optimization algorithm with dimension-reduction in power optimization of floating offshore wind farm," Applied Energy, Elsevier, vol. 351(C).
    14. Zhenzhou Shao & Ying Wu & Li Li & Shuang Han & Yongqian Liu, 2019. "Multiple Wind Turbine Wakes Modeling Considering the Faster Wake Recovery in Overlapped Wakes," Energies, MDPI, vol. 12(4), pages 1-14, February.
    15. Wu, Zhenlong & Bangga, Galih & Cao, Yihua, 2019. "Effects of lateral wind gusts on vertical axis wind turbines," Energy, Elsevier, vol. 167(C), pages 1212-1223.
    16. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    17. Hui Liu & Peng Wang & Teyang Zhao & Zhenggang Fan & Houlin Pan, 2022. "A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms," Energies, MDPI, vol. 15(8), pages 1-23, April.
    18. Verstraeten, Timothy & Nowé, Ann & Keller, Jonathan & Guo, Yi & Sheng, Shuangwen & Helsen, Jan, 2019. "Fleetwide data-enabled reliability improvement of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 428-437.
    19. Li, Zhiguo & Gao, Zhiying & Dai, Yuanjun & Wen, Caifeng & Zhang, Liru & Wang, Jianwen, 2023. "Unsteady aeroelastic performance analysis for large-scale megawatt wind turbines based on a novel aeroelastic coupling model," Renewable Energy, Elsevier, vol. 218(C).
    20. Qian, Guo-Wei & Ishihara, Takeshi, 2021. "Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5147-:d:1186239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.