IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4623-d1168039.html
   My bibliography  Save this article

Power Quality Measurement Results for a Configurable Urban Low-Voltage DC Microgrid

Author

Listed:
  • Helko E. van den Brom

    (VSL National Metrology Institute, 2629 JA Delft, The Netherlands)

  • Ronald van Leeuwen

    (VSL National Metrology Institute, 2629 JA Delft, The Netherlands)

  • Gerasimos Maroulis

    (DC Opportunities R&D, 2629 JD Delft, The Netherlands)

  • Samad Shah

    (DC Opportunities R&D, 2629 JD Delft, The Netherlands)

  • Laurens Mackay

    (DC Opportunities R&D, 2629 JD Delft, The Netherlands)

Abstract

The growing use of renewable energy sources and sustainable technologies has increased the attractiveness of low-voltage DC distribution grids. Despite initial research and standardization work, the definition of power quality (PQ) issues and their related compatibility levels in DC grids and the related measurement techniques remain in their infancy. The lack of available measurement results obtained in real-world situations is a major shortcoming. In this paper, the results of a measurement campaign obtained in a configurable bipolar 350 V/700 V DC microgrid in an urban environment are presented. Voltage and current signals were registered continuously at different positions in the microgrid with a sampling rate of 500 kSa/s while changing the configuration of the microgrid; the resulting data were analyzed afterwards, with a focus on DC voltage and current variation, ripple, and spectral analysis. The measurements were taken with custom-designed metrology-sound measurement equipment. The measurement results provide input to the development of DC PQ analysis tools and the standardization of DC PQ measurement methods. Furthermore, the experience obtained will be beneficial for utility companies and regulatory authorities for reliable planning-level and compatibility-level surveys.

Suggested Citation

  • Helko E. van den Brom & Ronald van Leeuwen & Gerasimos Maroulis & Samad Shah & Laurens Mackay, 2023. "Power Quality Measurement Results for a Configurable Urban Low-Voltage DC Microgrid," Energies, MDPI, vol. 16(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4623-:d:1168039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Mariscotti, 2021. "Power Quality Phenomena, Standards, and Proposed Metrics for DC Grids," Energies, MDPI, vol. 14(20), pages 1-41, October.
    2. Stephen Whaite & Brandon Grainger & Alexis Kwasinski, 2015. "Power Quality in DC Power Distribution Systems and Microgrids," Energies, MDPI, vol. 8(5), pages 1-22, May.
    3. Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
    4. Yljon Seferi & Steven M. Blair & Christian Mester & Brian G. Stewart, 2021. "A Novel Arc Detection Method for DC Railway Systems," Energies, MDPI, vol. 14(2), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Mariscotti, 2021. "Power Quality Phenomena, Standards, and Proposed Metrics for DC Grids," Energies, MDPI, vol. 14(20), pages 1-41, October.
    2. Gerber, Daniel L. & Ghatpande, Omkar A. & Nazir, Moazzam & Heredia, Willy G. Bernal & Feng, Wei & Brown, Richard E., 2022. "Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings," Applied Energy, Elsevier, vol. 308(C).
    3. Mena ElMenshawy & Ahmed Massoud, 2022. "Medium-Voltage DC-DC Converter Topologies for Electric Bus Fast Charging Stations: State-of-the-Art Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
    4. Sophie Coffey & Victor Timmers & Rui Li & Guanglu Wu & Agustí Egea-Àlvarez, 2021. "Review of MVDC Applications, Technologies, and Future Prospects," Energies, MDPI, vol. 14(24), pages 1-36, December.
    5. Dash, P.K. & Prasad, Eluri N.V.D.V. & Jalli, Ravi Kumar & Mishra, S.P., 2022. "Multiple power quality disturbances analysis in photovoltaic integrated direct current microgrid using adaptive morphological filter with deep learning algorithm," Applied Energy, Elsevier, vol. 309(C).
    6. Ahmad Alzahrani & Pourya Shamsi & Mehdi Ferdowsi, 2020. "Interleaved Multistage Step-Up Topologies with Voltage Multiplier Cells," Energies, MDPI, vol. 13(22), pages 1-18, November.
    7. Derong Luo & Ting Wu & Ming Li & Benshun Yi & Haibo Zuo, 2020. "Application of VMD and Hilbert Transform Algorithms on Detection of the Ripple Components of the DC Signal," Energies, MDPI, vol. 13(4), pages 1-20, February.
    8. Mengzhe Jin & Man Hu & Hao Li & Yixuan Yang & Weidong Liu & Qingyuan Fang & Shanghe Liu, 2022. "Experimental Study on the Transient Disturbance Characteristics and Influence Factors of Pantograph–Catenary Discharge," Energies, MDPI, vol. 15(16), pages 1-20, August.
    9. Alena Otcenasova & Roman Bodnar & Michal Regula & Marek Hoger & Michal Repak, 2017. "Methodology for Determination of the Number of Equipment Malfunctions Due to Voltage Sags," Energies, MDPI, vol. 10(3), pages 1-26, March.
    10. Luis Fernando Grisales-Noreña & Carlos Andrés Ramos-Paja & Daniel Gonzalez-Montoya & Gerardo Alcalá & Quetzalcoatl Hernandez-Escobedo, 2020. "Energy Management in PV Based Microgrids Designed for the Universidad Nacional de Colombia," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    11. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).
    12. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    13. Ahmed Abdelhak Smadi & Farid Khoucha & Yassine Amirat & Abdeldjabar Benrabah & Mohamed Benbouzid, 2023. "Active Disturbance Rejection Control of an Interleaved High Gain DC-DC Boost Converter for Fuel Cell Applications," Energies, MDPI, vol. 16(3), pages 1-17, January.
    14. Julio Barros & Matilde de Apráiz & Ramón I. Diego, 2019. "Power Quality in DC Distribution Networks," Energies, MDPI, vol. 12(5), pages 1-13, March.
    15. Marcos Vinicius Mosconi Ewerling & Telles Brunelli Lazzarin & Carlos Henrique Illa Font, 2022. "Modular SEPIC-Based Isolated dc–dc Converter with Reduced Voltage Stresses across the Semiconductors," Energies, MDPI, vol. 15(21), pages 1-21, October.
    16. Andrea Mariscotti, 2023. "The Electrical Behaviour of Railway Pantograph Arcs," Energies, MDPI, vol. 16(3), pages 1-43, February.
    17. Hyosung Kim, 2021. "Gate Drive Controller for Low Voltage DC Hybrid Circuit Breaker," Energies, MDPI, vol. 14(6), pages 1-9, March.
    18. Yamashita, Daniela Yassuda & Vechiu, Ionel & Gaubert, Jean-Paul, 2020. "A review of hierarchical control for building microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    19. Anna Ostrowska & Łukasz Michalec & Marek Skarupski & Michał Jasiński & Tomasz Sikorski & Paweł Kostyła & Robert Lis & Grzegorz Mudrak & Tomasz Rodziewicz, 2022. "Power Quality Assessment in a Real Microgrid-Statistical Assessment of Different Long-Term Working Conditions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    20. Huakun Bi & Ping Wang & Zhishuang Wang, 2018. "Common Grounded H-Type Bidirectional DC-DC Converter with a Wide Voltage Conversion Ratio for a Hybrid Energy Storage System," Energies, MDPI, vol. 11(2), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4623-:d:1168039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.