IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3202-d803693.html
   My bibliography  Save this article

SST-Based Grid Reinforcement for Electromobility Integration in Distribution Grids

Author

Listed:
  • Charukeshi Joglekar

    (Institute for Automation of Complex Power Systems, E.ON Energy Research Center, RWTH Aachen University, 52074 Aachen, Germany
    These authors contributed equally to this work.)

  • Benedict Mortimer

    (Institute for Power Generation and Storage Systems (PGS), E.ON Energy Research Center, RWTH Aachen University, 52074 Aachen, Germany
    These authors contributed equally to this work.)

  • Ferdinanda Ponci

    (Institute for Automation of Complex Power Systems, E.ON Energy Research Center, RWTH Aachen University, 52074 Aachen, Germany)

  • Antonello Monti

    (Institute for Automation of Complex Power Systems, E.ON Energy Research Center, RWTH Aachen University, 52074 Aachen, Germany
    Center for Digital Energy Aachen, Fraunhofer FIT, 52074 Aachen, Germany)

  • Rik W. De Doncker

    (Institute for Power Generation and Storage Systems (PGS), E.ON Energy Research Center, RWTH Aachen University, 52074 Aachen, Germany)

Abstract

Electric Vehicles (EVs) are gaining acceptance due to the advantages they offer in the reduction of nitrogen oxide and carbon dioxide emissions. The need for emission reduction and the potential of EVs for these reductions is reflected in the current sustainable mobility policies of the EU as well as the German government. Increasing the penetration of EVs in the grid requires an expansion of EV charging infrastructure, which in turn requires either grid reinforcement or solutions for more efficient use of existing infrastructure to avoid or postpone grid reinforcement. Distribution transformers face increased loading due to EV charging and need to be protected from overloading during peak load periods to ensure continuity of service. Therefore, transformers are one of the components that are upgraded or replaced as a part of grid reinforcement. In this paper, we propose the connection of a Solid-State Transformers (SST) between two buses operating at the same-voltage level as an alternative to replacement or upgrading of conventional transformer as well as to prevent their overloading. We analyse how the proposed topology can be useful to reduce the impact of EV integration on the overloading of distribution transformers and node voltage violations in the distribution grid.

Suggested Citation

  • Charukeshi Joglekar & Benedict Mortimer & Ferdinanda Ponci & Antonello Monti & Rik W. De Doncker, 2022. "SST-Based Grid Reinforcement for Electromobility Integration in Distribution Grids," Energies, MDPI, vol. 15(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3202-:d:803693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sylvester Johansson & Jonas Persson & Stavros Lazarou & Andreas Theocharis, 2019. "Investigation of the Impact of Large-Scale Integration of Electric Vehicles for a Swedish Distribution Network," Energies, MDPI, vol. 12(24), pages 1-22, December.
    2. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Dziarski & Arkadiusz Hulewicz & Piotr Kuwałek & Grzegorz Wiczyński, 2023. "Methods of Measurement of Die Temperature of Semiconductor Elements: A Review," Energies, MDPI, vol. 16(6), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
    2. Paolo Lazzeroni & Brunella Caroleo & Maurizio Arnone & Cristiana Botta, 2021. "A Simplified Approach to Estimate EV Charging Demand in Urban Area: An Italian Case Study," Energies, MDPI, vol. 14(20), pages 1-18, October.
    3. Maxwell Woody & Michael T. Craig & Parth T. Vaishnav & Geoffrey M. Lewis & Gregory A. Keoleian, 2022. "Optimizing future cost and emissions of electric delivery vehicles," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1108-1122, June.
    4. Wang, An & Xu, Junshi & Zhang, Mingqian & Zhai, Zhiqiang & Song, Guohua & Hatzopoulou, Marianne, 2022. "Emissions and fuel consumption of a hybrid electric vehicle in real-world metropolitan traffic conditions," Applied Energy, Elsevier, vol. 306(PB).
    5. Powell, Siobhan & Cezar, Gustavo Vianna & Rajagopal, Ram, 2022. "Scalable probabilistic estimates of electric vehicle charging given observed driver behavior," Applied Energy, Elsevier, vol. 309(C).
    6. Jong Hui Moon & Han Na Gwon & Gi Ryong Jo & Woo Yeong Choi & Kyung Soo Kook, 2020. "Stochastic Modeling Method of Plug-in Electric Vehicle Charging Demand for Korean Transmission System Planning," Energies, MDPI, vol. 13(17), pages 1-14, August.
    7. Christian van Someren & Martien Visser & Han Slootweg, 2023. "Sizing Batteries for Power Flow Management in Distribution Grids: A Method to Compare Battery Capacities for Different Siting Configurations and Variable Power Flow Simultaneity," Energies, MDPI, vol. 16(22), pages 1-19, November.
    8. Jasmine Ramsebner & Albert Hiesl & Reinhard Haas, 2020. "Efficient Load Management for BEV Charging Infrastructure in Multi-Apartment Buildings," Energies, MDPI, vol. 13(22), pages 1-23, November.
    9. Edmunds, Calum & Galloway, Stuart & Dixon, James & Bukhsh, Waqquas & Elders, Ian, 2021. "Hosting capacity assessment of heat pumps and optimised electric vehicle charging on low voltage networks," Applied Energy, Elsevier, vol. 298(C).
    10. Bernd Thormann & Thomas Kienberger, 2022. "Estimation of Grid Reinforcement Costs Triggered by Future Grid Customers: Influence of the Quantification Method (Scaling vs. Large-Scale Simulation) and Coincidence Factors (Single vs. Multiple Appl," Energies, MDPI, vol. 15(4), pages 1-26, February.
    11. Andreas Theocharis & Sahaphol Hamanee, 2022. "Battery Storage at the Secondary Distribution Electricity Grid by Investigating End-Users Load Demand Measurements," Energies, MDPI, vol. 15(8), pages 1-24, April.
    12. Wu, Ji & Su, Hao & Meng, Jinhao & Lin, Mingqiang, 2023. "Electric vehicle charging scheduling considering infrastructure constraints," Energy, Elsevier, vol. 278(PA).
    13. Powell, Siobhan & Vianna Cezar, Gustavo & Apostolaki-Iosifidou, Elpiniki & Rajagopal, Ram, 2022. "Large-scale scenarios of electric vehicle charging with a data-driven model of control," Energy, Elsevier, vol. 248(C).
    14. Kang, Zixuan & Ye, Zhongnan & Lam, Chor-Man & Hsu, Shu-Chien, 2023. "Sustainable electric vehicle charging coordination: Balancing CO2 emission reduction and peak power demand shaving," Applied Energy, Elsevier, vol. 349(C).
    15. Liu, Lu & Zhou, Kaile, 2022. "Electric vehicle charging scheduling considering urgent demand under different charging modes," Energy, Elsevier, vol. 249(C).
    16. Guo, Rui & Meunier, Simon & Protopapadaki, Christina & Saelens, Dirk, 2023. "A review of European low-voltage distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    17. Brinkel, Nico & Zijlstra, Marle & van Bezu, Ronald & van Twuijver, Tim & Lampropoulos, Ioannis & van Sark, Wilfried, 2023. "A comparative analysis of charging strategies for battery electric buses in wholesale electricity and ancillary services markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    18. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    19. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    20. Loris Di Natale & Luca Funk & Martin Rüdisüli & Bratislav Svetozarevic & Giacomo Pareschi & Philipp Heer & Giovanni Sansavini, 2021. "The Potential of Vehicle-to-Grid to Support the Energy Transition: A Case Study on Switzerland," Energies, MDPI, vol. 14(16), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3202-:d:803693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.