IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3143-d801893.html
   My bibliography  Save this article

The Efficiency Prediction of the Laser Charging Based on GA-BP

Author

Listed:
  • Chengmin Wang

    (School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
    School of Digital Equipment, Jiangsu Vocational College of Electronics and Information, Huai’an 223003, China)

  • Guangji Li

    (School of Science, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Imran Ali

    (School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
    Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan)

  • Hongchao Zhang

    (School of Science, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Han Tian

    (School of Digital Equipment, Jiangsu Vocational College of Electronics and Information, Huai’an 223003, China)

  • Jian Lu

    (School of Science, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract

In IoT applications, energy supply, especially wireless power transfer (WPT), has attracted the most attention in the relevant literature. In this paper, we present a new approach to laser irradiance solar cell panels and predicting energy transfer efficiency. From the previous experimental datasets, it has been discovered that in the laser charging (LC) process, temperature has a great impact on the efficiency, which is highly correlated with the laser intensity. Then, based on artificial neural network (ANN), we set the above temperature and laser intensity as inputs, and the efficiency as output through back propagation (BP) algorithm, and use neural network and BP to train and modify the network parameters to approach the real efficiency value. We also propose the genetic algorithm (GA) to optimize the learning rate of the BP, which achieved slightly superior results. The results of the experiment indicate that the prediction method reaches a high accuracy of about 99.4%. The research results in this paper provide an improved solution for the LC application, particularly the energy supply of IoT devices or small electronic devices through WPT.

Suggested Citation

  • Chengmin Wang & Guangji Li & Imran Ali & Hongchao Zhang & Han Tian & Jian Lu, 2022. "The Efficiency Prediction of the Laser Charging Based on GA-BP," Energies, MDPI, vol. 15(9), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3143-:d:801893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    2. Javier López Gómez & Ana Ogando Martínez & Francisco Troncoso Pastoriza & Lara Febrero Garrido & Enrique Granada Álvarez & José Antonio Orosa García, 2020. "Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    3. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    4. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    5. Huxley, O.T. & Taylor, J. & Everard, A. & Briggs, J. & Tilley, K. & Harwood, J. & Buckley, A., 2022. "The uncertainties involved in measuring national solar photovoltaic electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Seyed Mahdi Miraftabzadeh & Cristian Giovanni Colombo & Michela Longo & Federica Foiadelli, 2023. "A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks," Forecasting, MDPI, vol. 5(1), pages 1-16, February.
    7. Anh Tuan Phan & Thi Tuyet Hong Vu & Dinh Quang Nguyen & Eleonora Riva Sanseverino & Hang Thi-Thuy Le & Van Cong Bui, 2022. "Data Compensation with Gaussian Processes Regression: Application in Smart Building’s Sensor Network," Energies, MDPI, vol. 15(23), pages 1-16, December.
    8. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    9. Unterberger, Viktor & Lichtenegger, Klaus & Kaisermayer, Valentin & Gölles, Markus & Horn, Martin, 2021. "An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems," Applied Energy, Elsevier, vol. 293(C).
    10. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    11. Wolfram Rozas & Rafael Pastor-Vargas & Angel Miguel García-Vico & José Carpio, 2023. "Consumption–Production Profile Categorization in Energy Communities," Energies, MDPI, vol. 16(19), pages 1-27, October.
    12. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    13. Ian B. Benitez & Jessa A. Ibañez & Cenon III D. Lumabad & Jayson M. Cañete & Jeark A. Principe, 2023. "Day-Ahead Hourly Solar Photovoltaic Output Forecasting Using SARIMAX, Long Short-Term Memory, and Extreme Gradient Boosting: Case of the Philippines," Energies, MDPI, vol. 16(23), pages 1-21, November.
    14. Jiang, Shi-Jie & Chu, Shu-Chuan & Zou, Fu-Min & Shan, Jie & Zheng, Shi-Guang & Pan, Jeng-Shyang, 2023. "A parallel Archimedes optimization algorithm based on Taguchi method for application in the control of variable pitch wind turbine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 306-327.
    15. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
    16. Emanuele Ogliari & Alfredo Nespoli & Marco Mussetta & Silvia Pretto & Andrea Zimbardo & Nicholas Bonfanti & Manuele Aufiero, 2020. "A Hybrid Method for the Run-Of-The-River Hydroelectric Power Plant Energy Forecast: HYPE Hydrological Model and Neural Network," Forecasting, MDPI, vol. 2(4), pages 1-19, October.
    17. Yuhao Zhang & Ting Li & Tianyi Ma & Dongsheng Yang & Xiaolong Sun, 2024. "Short-Term Photovoltaic Power Prediction Based on Extreme Learning Machine with Improved Dung Beetle Optimization Algorithm," Energies, MDPI, vol. 17(4), pages 1-24, February.
    18. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    19. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    20. Gómez-Amo, J.L. & Freile-Aranda, M.D. & Camarasa, J. & Estellés, V. & Utrillas, M.P. & Martínez-Lozano, J.A., 2019. "Empirical estimates of the radiative impact of an unusually extreme dust and wildfire episode on the performance of a photovoltaic plant in Western Mediterranean," Applied Energy, Elsevier, vol. 235(C), pages 1226-1234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3143-:d:801893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.