IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3132-d801736.html
   My bibliography  Save this article

Bioethanol Production Efficiency from Sorghum Waste Biomass

Author

Listed:
  • Jakub Frankowski

    (Department of Bioeconomy, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland)

  • Aleksandra Wawro

    (Department of Bioproduct Engineering, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland)

  • Jolanta Batog

    (Department of Bioproduct Engineering, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland)

  • Katarzyna Szambelan

    (Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland)

  • Agnieszka Łacka

    (Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland)

Abstract

The problem of global warming is still a major issue, alongside shrinking oil reserves. A great alternative to fossil fuels is offered by biofuels, such as bioethanol from lignocellulosic plants. The sorghum biomass can be effectively used in many industrial directions. It is possible to use every part of this plant; the grain can be used for food production and straw can be used for energy purposes, i.e., for bioethanol. The aim of this study was to analyze the possibilities of bioethanol production from five varieties of sorghum biomass, which is a waste product of seed harvesting. The yields of sorghum cultivars in a three-year vegetation period; the amount of cellulose, hemicellulose, and lignin in the biomass of sorghum; and the amount of ethanol obtained per hectare were evaluated. It was observed that the highest average yield for all cultivars, except GK Emese, was found in the second year of the study. The bioethanol yield per hectare from this biomass was the highest for Sweet Caroline and was 9.48 m 3 ∙ha −1 . In addition, significant differences were found in the content of lignin and hemicellulose for the varieties tested in all years of the study and for the content of cellulose in the first and third years. The discussed results were confirmed by detailed statistical analyses, including combined matrices of Pearson correlation coefficients (cr p ) varieties and cluster analysis. In summary, the usefulness of the biomass of the studied sorghum varieties for the production of bioethanol was demonstrated.

Suggested Citation

  • Jakub Frankowski & Aleksandra Wawro & Jolanta Batog & Katarzyna Szambelan & Agnieszka Łacka, 2022. "Bioethanol Production Efficiency from Sorghum Waste Biomass," Energies, MDPI, vol. 15(9), pages 1-11, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3132-:d:801736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
    2. Aydinsakir, Koksal & Buyuktas, Dursun & Dinç, Nazmi & Erdurmus, Cengiz & Bayram, Edip & Yegin, Arzu Bayir, 2021. "Yield and bioethanol productivity of sorghum under surface and subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Jolanta Batog & Jakub Frankowski & Aleksandra Wawro & Agnieszka Łacka, 2020. "Bioethanol Production from Biomass of Selected Sorghum Varieties Cultivated as Main and Second Crop," Energies, MDPI, vol. 13(23), pages 1-12, November.
    4. Clara W. Mundia & Silvia Secchi & Kofi Akamani & Guangxing Wang, 2019. "A Regional Comparison of Factors Affecting Global Sorghum Production: The Case of North America, Asia and Africa’s Sahel," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louis K. Prom, 2023. "Frequency of Isolation of Four Fungal Species Colonizing Sorghum Grain Collected from Six Lines in an Anthracnose-Infected Field," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 9(1), pages 137-140, 01-2023.
    2. Tibugari, Handsen & Chiduza, Cornelius, 2022. "Allelopathic sorghum aqueous root extracts inhibit germination and seedling growth of crops and weeds," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 22(04).
    3. Arkadiusz Piwowar, 2021. "The problem of energy poverty in the activities of agricultural advisory centres in Poland," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-14, October.
    4. Oleg Bazaluk & Valerii Havrysh & Mykhailo Fedorchuk & Vitalii Nitsenko, 2021. "Energy Assessment of Sorghum Cultivation in Southern Ukraine," Agriculture, MDPI, vol. 11(8), pages 1-22, July.
    5. Abdulrasheed Zakari & Jurij Toplak & Luka Martin Tomažič, 2022. "Exploring the Relationship between Energy and Food Security in Africa with Instrumental Variables Analysis," Energies, MDPI, vol. 15(15), pages 1-14, July.
    6. Keerthi Chadalavada & Sridhar Gummadi & Koteswara Rao Kundeti & Dakshina Murthy Kadiyala & Kumara Charyulu Deevi & Kailas Kamaji Dakhore & Ranjitha Kumari Bollipo Diana & Senthil Kumar Thiruppathi, 2021. "Simulating Potential Impacts of Future Climate Change on Post-Rainy Season Sorghum Yields in India," Sustainability, MDPI, vol. 14(1), pages 1-24, December.
    7. Sandro Sacchelli & Valerii Havrysh & Antonina Kalinichenko & Dariusz Suszanowicz, 2022. "Ground-Mounted Photovoltaic and Crop Cultivation: A Comparative Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    8. Artur Czech & Jerzy Lewczuk & Leonas Ustinovichius & Robertas Kontrimovičius, 2022. "Multi-Criteria Assessment of Transport Sustainability in Chosen European Union Countries: A Dynamic Approach," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    9. Gifty Sienso & ohammed Ishmael & Munkaila Lambongang, 2021. "Technical Efficiency of Sorghum Production in Garu District of the Upper East Region, Ghana," Economy, Asian Online Journal Publishing Group, vol. 8(1), pages 1-9.
    10. Piotr Jurga & Efstratios Loizou & Stelios Rozakis, 2021. "Comparing Bioeconomy Potential at National vs. Regional Level Employing Input-Output Modeling," Energies, MDPI, vol. 14(6), pages 1-17, March.
    11. Krystyna Kurowska & Hubert Kryszk & Stanisław Bielski, 2022. "Location and Technical Requirements for Photovoltaic Power Stations in Poland," Energies, MDPI, vol. 15(7), pages 1-16, April.
    12. Ewa Pecka-Kiełb & Dorota Miśta & Bożena Króliczewska & Andrzej Zachwieja & Maja Słupczyńska & Barbara Król & Józef Sowiński, 2021. "Changes in the In Vitro Ruminal Fermentation of Diets for Dairy Cows Based on Selected Sorghum Cultivars Compared to Maize, Rye and Grass Silage," Agriculture, MDPI, vol. 11(6), pages 1-11, May.
    13. Aleksandra Wawro & Jakub Jakubowski & Weronika Gieparda & Zenon Pilarek & Agnieszka Łacka, 2023. "Potential of Pine Needle Biomass for Bioethanol Production," Energies, MDPI, vol. 16(9), pages 1-10, May.
    14. Wang, Cheng & Bai, Dan & Li, Yibo & Yao, Baolin & Feng, Yaqin, 2021. "The comparison of different irrigation methods on yield and water use efficiency of the jujube," Agricultural Water Management, Elsevier, vol. 252(C).
    15. G. Arun Balaji & Vellingiri Geethalakshmi & Alagarsamy Senthil & Mockaisamy Prahadeeswaran & Sivakumarasamy Iswarya & Marimuthu Rajavel & Kulanthaivel Bhuvaneswari & Balakrishnan Natarajan & Kandasamy, 2023. "Assessment of Economic Efficiency and Its Determents for Mixed Crop Livestock Production under Dryland Agriculture System in the Western Zone of Tamil Nadu, India," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    16. Francis Okot & Mark Laing & Hussein Shimelis & Walter A. J. de Milliano, 2022. "Diagnostic Appraisal of the Sorghum Farming System and Breeding Priorities in Sierra Leone," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    17. Jolanta Batog & Jakub Frankowski & Aleksandra Wawro & Agnieszka Łacka, 2020. "Bioethanol Production from Biomass of Selected Sorghum Varieties Cultivated as Main and Second Crop," Energies, MDPI, vol. 13(23), pages 1-12, November.
    18. Andekelile Mwamahonje & John Saviour Yaw Eleblu & Kwadwo Ofori & Santosh Deshpande & Tileye Feyissa & William Elisha Bakuza, 2021. "Sorghum Production Constraints, Trait Preferences, and Strategies to Combat Drought in Tanzania," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    19. Stanisław Bielski & Anna Zielińska-Chmielewska & Renata Marks-Bielska, 2021. "Use of Environmental Management Systems and Renewable Energy Sources in Selected Food Processing Enterprises in Poland," Energies, MDPI, vol. 14(11), pages 1-16, May.
    20. Michael Adu Okyere & Boqiang Lin, 2023. "Invisible among the vulnerable: a nuanced perspective of energy poverty at the intersection of gender and disability in South Africa," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3132-:d:801736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.