IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3117-d801315.html
   My bibliography  Save this article

Dynamic Energy Management for Perpetual Operation of Energy Harvesting Wireless Sensor Node Using Fuzzy Q-Learning

Author

Listed:
  • Roy Chaoming Hsu

    (Electrical Engineering Department, National Chiayi University, Chiayi City 600355, Taiwan)

  • Tzu-Hao Lin

    (Electrical Engineering Department, National Chiayi University, Chiayi City 600355, Taiwan)

  • Po-Cheng Su

    (Electrical Engineering Department, National Chiayi University, Chiayi City 600355, Taiwan)

Abstract

In an energy harvesting wireless sensor node (EHWSN), balance of energy harvested and consumption using dynamic energy management to achieve the goal of perpetual operation is one of the most important research topics. In this study, a novel fuzzy Q-learning (FQL)-based dynamic energy management (FQLDEM) is proposed in adapting its policy to the time varying environment, regarding both the harvested energy and the energy consumption of the WSN. The FQLDEM applies Q-learning to train, evaluate, and update the fuzzy rule base and then uses the fuzzy inference system (FIS) for determining the working duty cycle of the sensor of the EHWSN. Through the interaction with the energy harvesting environment, the learning agent of the FQL will be able to find the appropriate fuzzy rules in adapting the working duty cycle for the goal of energy neutrality such that the objective of perpetual operation of the EHWSN can be achieved. Experimental results show that the FQLDEM can maintain the battery charge status at a higher level than other existing methods did, such as the reinforcement learning (RL) method and dynamic duty cycle adaption (DDCA), and achieve the perpetual operation of the EHWSN. Furthermore, experimental results for required on-demand sensing measurements exhibit that the FQLDEM method can be slowly upgraded to meet 65% of the service quality control requirements in the early stage, which outperforms the RL-based and DDCA methods.

Suggested Citation

  • Roy Chaoming Hsu & Tzu-Hao Lin & Po-Cheng Su, 2022. "Dynamic Energy Management for Perpetual Operation of Energy Harvesting Wireless Sensor Node Using Fuzzy Q-Learning," Energies, MDPI, vol. 15(9), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3117-:d:801315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ye, Jun, 2010. "Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment," European Journal of Operational Research, Elsevier, vol. 205(1), pages 202-204, August.
    2. Eyad Radwan & Mutasim Nour & Emad Awada & Ali Baniyounes, 2019. "Fuzzy Logic Control for Low-Voltage Ride-Through Single-Phase Grid-Connected PV Inverter," Energies, MDPI, vol. 12(24), pages 1-19, December.
    3. Myada Shadoul & Hassan Yousef & Rashid Al Abri & Amer Al-Hinai, 2021. "Adaptive Fuzzy Approximation Control of PV Grid-Connected Inverters," Energies, MDPI, vol. 14(4), pages 1-22, February.
    4. Kofinas, P. & Dounis, A.I. & Vouros, G.A., 2018. "Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids," Applied Energy, Elsevier, vol. 219(C), pages 53-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tehseen Mazhar & Rizwana Naz Asif & Muhammad Amir Malik & Muhammad Asgher Nadeem & Inayatul Haq & Muhammad Iqbal & Muhammad Kamran & Shahzad Ashraf, 2023. "Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods," Sustainability, MDPI, vol. 15(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    2. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    3. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    4. Pei Dang & Zhanwen Niu & Shang Gao & Lei Hou & Guomin Zhang, 2020. "Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    5. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    6. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    7. Saeid Alaei & Seyed Hossein Razavi Hajiagha & Hannan Amoozad Mahdiraji & Jose Arturo Garza-Reyes, 2023. "Unveiling the role of sustainable supply chain drivers toward knowledge-based economy via a novel permutation approach: implications from an emerging economy," Operations Management Research, Springer, vol. 16(3), pages 1231-1250, September.
    8. Zehai Gao & Yang Liu & Nan Li & Kangjie Ma, 2022. "An Enhanced Beetle Antennae Search Algorithm Based Comprehensive Water Quality Index for Urban River Water Quality Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2685-2702, June.
    9. Yi Zhang & Yao Xu & Hao Kong & Gang Zhou, 2022. "Spatial-Temporal Evolution of Coupling Coordination between Green Transformation and the Quality of Economic Development," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    10. Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
    11. Jicheng Fang & Yifei Wang & Zhen Lei & Qingshan Xu, 2022. "Control Strategy and Performance Analysis of Electrochemical Energy Storage Station Participating in Power System Frequency Regulation: A Case Study of the Jiangsu Power Grid," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
    12. Yang, Chih-Ching, 2016. "Correlation coefficient evaluation for the fuzzy interval data," Journal of Business Research, Elsevier, vol. 69(6), pages 2138-2144.
    13. Yeqin Wang & Yan Yang & Rui Liang & Tao Geng & Weixing Zhang, 2022. "Adaptive Current Control for Grid-Connected Inverter with Dynamic Recurrent Fuzzy-Neural-Network," Energies, MDPI, vol. 15(11), pages 1-20, June.
    14. Zheng, Lingwei & Wu, Hao & Guo, Siqi & Sun, Xinyu, 2023. "Real-time dispatch of an integrated energy system based on multi-stage reinforcement learning with an improved action-choosing strategy," Energy, Elsevier, vol. 277(C).
    15. Hassan Hashemi & Seyed Meysam Mousavi & Edmundas Kazimieras Zavadskas & Alireza Chalekaee & Zenonas Turskis, 2018. "A New Group Decision Model Based on Grey-Intuitionistic Fuzzy-ELECTRE and VIKOR for Contractor Assessment Problem," Sustainability, MDPI, vol. 10(5), pages 1-19, May.
    16. Grzegorz Dec & Grzegorz Drałus & Damian Mazur & Bogdan Kwiatkowski, 2021. "Forecasting Models of Daily Energy Generation by PV Panels Using Fuzzy Logic," Energies, MDPI, vol. 14(6), pages 1-16, March.
    17. Jian Lin & Fanyong Meng & Riqing Chen & Qiang Zhang, 2018. "Preference Attitude-Based Method for Ranking Intuitionistic Fuzzy Numbers and Its Application in Renewable Energy Selection," Complexity, Hindawi, vol. 2018, pages 1-14, February.
    18. Marcel García & Jose Aguilar & María D. R-Moreno, 2024. "An Autonomous Distributed Coordination Strategy for Sustainable Consumption in a Microgrid Based on a Bio-Inspired Approach," Energies, MDPI, vol. 17(3), pages 1-28, February.
    19. Yeh, Wei-Chang & He, Min-Fan & Huang, Chia-Ling & Tan, Shi-Yi & Zhang, Xianyong & Huang, Yaohong & Li, Li, 2020. "New genetic algorithm for economic dispatch of stand-alone three-modular microgrid in DongAo Island," Applied Energy, Elsevier, vol. 263(C).
    20. Jian-qiang Wang & Zhi-qiu Han & Hong-yu Zhang, 2014. "Multi-criteria Group Decision-Making Method Based on Intuitionistic Interval Fuzzy Information," Group Decision and Negotiation, Springer, vol. 23(4), pages 715-733, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3117-:d:801315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.