IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2912-d794764.html
   My bibliography  Save this article

Outflow from a Biogas Plant as a Medium for Microalgae Biomass Cultivation—Pilot Scale Study and Technical Concept of a Large-Scale Installation

Author

Listed:
  • Marcin Zieliński

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

  • Marcin Dębowski

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

  • Joanna Kazimierowicz

    (Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland)

Abstract

Microalgae-based technologies have huge potential for application in the environment sector and the bio-energy industry. However, their cost-efficiency has to be improved by drawing on design and operation data for large-scale installations. This paper presents a technical concept of an installation for large-scale microalgae culture on digestate liquor, and the results of a pilot-scale study to test its performance. The quality of non-treated digestate has been shown to be insufficient for direct use as a growth medium due to excess suspended solids, turbidity, and organic matter content, which need to be reduced. To that end, this paper proposes a system based on mechanical separation, flotation, and pre-treatment on a biofilter. The culture medium fed into photobioreactors had the following parameters after the processing: COD—340 mgO 2 /dm 3 , BOD 5 —100 mgO 2 /dm 3 , TN—900 mg/dm 3 , and TP—70 mg/dm 3 . The installation can produce approx. 720 kg VS /day of microalgal biomass. A membrane unit and a thickening centrifuge (thickener) were incorporated into the design to separate and dehydrate the microalgal biomass, respectively. The total energy consumption approximated 1870 kWh/day.

Suggested Citation

  • Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2022. "Outflow from a Biogas Plant as a Medium for Microalgae Biomass Cultivation—Pilot Scale Study and Technical Concept of a Large-Scale Installation," Energies, MDPI, vol. 15(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2912-:d:794764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2912/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2912/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ogbonna, Christiana N. & Nwoba, Emeka G., 2021. "Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Natalia Kujawska & Szymon Talbierz & Marcin Dębowski & Joanna Kazimierowicz & Marcin Zieliński, 2021. "Cultivation Method Effect on Schizochytrium sp. Biomass Growth and Docosahexaenoic Acid (DHA) Production with the Use of Waste Glycerol as a Source of Organic Carbon," Energies, MDPI, vol. 14(10), pages 1-16, May.
    3. Marta Kisielewska & Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Zdzisława Romanowska-Duda & Magda Dudek, 2020. "Effectiveness of Scenedesmus sp. Biomass Grow and Nutrients Removal from Liquid Phase of Digestates," Energies, MDPI, vol. 13(6), pages 1-11, March.
    4. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    5. Faried Jaendar Muda & Rajesri Govindaraju & Iwan Inrawan Wiratmadja, 2022. "An Additional Model to Control Risk in Mastering Defense Technology in Indonesia," Sustainability, MDPI, vol. 14(3), pages 1-16, January.
    6. Yin, Zhihong & Chu, Ruoyu & Zhu, Liandong & Li, Shuangxi & Mo, Fan & Hu, Dan & Liu, Chenchen, 2021. "Application of chitosan-based flocculants to harvest microalgal biomass for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    8. Miyawaki, B. & Mariano, A.B. & Vargas, J.V.C. & Balmant, W. & Defrancheschi, A.C. & Corrêa, D.O. & Santos, B. & Selesu, N.F.H. & Ordonez, J.C. & Kava, V.M., 2021. "Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment," Renewable Energy, Elsevier, vol. 163(C), pages 1153-1165.
    9. Avinash, A. & Sasikumar, P. & Pugazhendhi, Arivalagan, 2020. "Analysis of the limiting factors for large scale microalgal cultivation: A promising future for renewable and sustainable biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magda Dudek & Marcin Dębowski & Joanna Kazimierowicz & Marcin Zieliński & Piera Quattrocelli & Anna Nowicka, 2022. "The Cultivation of Biohydrogen-Producing Tetraselmis subcordiformis Microalgae as the Third Stage of Dairy Wastewater Aerobic Treatment System," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    2. Marcin Dębowski & Izabela Świca & Joanna Kazimierowicz & Marcin Zieliński, 2022. "Large Scale Microalgae Biofuel Technology—Development Perspectives in Light of the Barriers and Limitations," Energies, MDPI, vol. 16(1), pages 1-23, December.
    3. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    4. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.
    5. Kai Ling Yu & Hwai Chyuan Ong & Halimah Badioze Zaman, 2022. "Microalgae Biomass as Biofuel and the Green Applications," Energies, MDPI, vol. 15(19), pages 1-6, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Dębowski & Izabela Świca & Joanna Kazimierowicz & Marcin Zieliński, 2022. "Large Scale Microalgae Biofuel Technology—Development Perspectives in Light of the Barriers and Limitations," Energies, MDPI, vol. 16(1), pages 1-23, December.
    2. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.
    3. Afifi Akhiar & Felipe Guilayn & Michel Torrijos & Audrey Battimelli & Abd Halim Shamsuddin & Hélène Carrère, 2021. "Correlations between the Composition of Liquid Fraction of Full-Scale Digestates and Process Conditions," Energies, MDPI, vol. 14(4), pages 1-24, February.
    4. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    5. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    6. Kęstutis Venslauskas & Kęstutis Navickas & Marja Nappa & Petteri Kangas & Revilija Mozūraitytė & Rasa Šližytė & Vidmantas Župerka, 2021. "Energetic and Economic Evaluation of Zero-Waste Fish Co-Stream Processing," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
    7. TsingHai Wang & Cheng-Di Dong & Jui-Yen Lin & Chiu-Wen Chen & Jo-Shu Chang & Hyunook Kim & Chin-Pao Huang & Chang-Mao Hung, 2021. "Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    8. Mohrmann, Sören & Steins, Aaron & Schaper, Christian, 2021. "Erfolgsfaktoren und Zukunftsaussichten für eine wirtschaftliche Biogasproduktion in Deutschland - Ergebnisse einer qualitativen Inhaltsanalyse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317072, German Association of Agricultural Economists (GEWISOLA).
    9. Sebastian Awiszus & Klaus Meissner & Sebastian Reyer & Joachim Müller, 2019. "Environmental Assessment of a Bio-Refinery Concept Comprising Biogas Production, Lactic Acid Extraction and Plant Nutrient Recovery," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    10. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    11. Wang, Yunbo & Xu, Haiqing & Yang, Jinzhi & Zhou, Yan & Wang, Xu & Dou, Shijuan & Li, Liyun & Liu, Guozhen & Yang, Ming, 2022. "Effect of sulfur limitation strategies on glucose-based carbohydrate production from Chlorella sorokiniana," Renewable Energy, Elsevier, vol. 200(C), pages 449-456.
    12. Luz M. Gallego Fernández & Esmeralda Portillo Estévez & Francisco M. Baena‐Moreno & Luis F. Vilches Arena & Benito Navarrete Rubia, 2023. "Advances in research project IBUMECO2: project and process description, methodology, and goals expected," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 13(2), pages 160-172, April.
    13. Marcin Dębowski & Magda Dudek & Marcin Zieliński & Anna Nowicka & Joanna Kazimierowicz, 2021. "Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review," Energies, MDPI, vol. 14(19), pages 1-27, September.
    14. Ciechanowski, Wojciech & Maciejczak, Mariusz, 2023. "Functioning of Agricultural Biogas Plants from the Perspective of Transaction Costs-A Case Study," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2023(4).
    15. Shokravi, Zahra & Shokravi, Hoofar & Atabani, A.E. & Lau, Woei Jye & Chyuan, Ong Hwai & Ismail, Ahmad Fauzi, 2022. "Impacts of the harvesting process on microalgae fatty acid profiles and lipid yields: Implications for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. G. Venkatesh, 2022. "Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021," Circular Economy and Sustainability,, Springer.
    17. Magda Dudek & Marcin Dębowski & Anna Nowicka & Joanna Kazimierowicz & Marcin Zieliński, 2022. "The Effect of Autotrophic Cultivation of Platymonas subcordiformis in Waters from the Natural Aquatic Reservoir on Hydrogen Yield," Resources, MDPI, vol. 11(3), pages 1-11, March.
    18. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    19. Arkadiusz Piwowar, 2020. "Agricultural Biogas—An Important Element in the Circular and Low-Carbon Development in Poland," Energies, MDPI, vol. 13(7), pages 1-12, April.
    20. Franz Grossauer & Gernot Stoeglehner, 2023. "Bioeconomy—A Systematic Literature Review on Spatial Aspects and a Call for a New Research Agenda," Land, MDPI, vol. 12(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2912-:d:794764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.