IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1886-d763731.html
   My bibliography  Save this article

Effect of Bipolar Plate Material on Proton Exchange Membrane Fuel Cell Performance

Author

Listed:
  • Tabbi Wilberforce

    (Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK)

  • Oluwatosin Ijaodola

    (Institute of Engineering and Energy Technologies, University of the West of Scotland, Glasgow G72 0LH, UK)

  • Ahmad Baroutaji

    (School of Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK)

  • Emmanuel Ogungbemi

    (Institute of Engineering and Energy Technologies, University of the West of Scotland, Glasgow G72 0LH, UK)

  • Abdul Ghani Olabi

    (Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK
    Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates)

Abstract

Commercialization of proton exchange membrane fuel cells can only materials provided its performance is closely related to existing technologies useful in commercial application. Other critical parameters like the utilization of cheaper materials should be taken into account during the manufacturing of the cell. A key component in the cell that has direct correlation to the cell performance is the flow plate. The weight coupled with cost of the cell revolves around the flow plate used in the manufacturing of the cell. This study explores materials ideal for the manufacturing of fuel cells in order to improve the overall cell performance. The investigation highlights the critical impact of varying materials used in the manufacturing of flow plates for PEM fuel cells. Stainless steel (SS), aluminium (Al) and copper (Cu) were the materials considered. The flow plate designs considered were serpentine and open pore cellular foam channel. Machine learning using python for the validation of the results with Linear regression, Ridge regression and Polynomial regression algorithm was carried out. The performance of both flow field channels was compared using different bipolar plate materials. The results show that metal foam flow channels overall performance was better than serpentine flow channels with all the various bipolar plate material used and Al material outperformed Cu and SS material. There is a direct correlation in terms of the outcome of the study and literature based on the data generated experimentally. It can however be concluded that molecules of hydrogen are stable on aluminium plates compared to copper and stainless steel.

Suggested Citation

  • Tabbi Wilberforce & Oluwatosin Ijaodola & Ahmad Baroutaji & Emmanuel Ogungbemi & Abdul Ghani Olabi, 2022. "Effect of Bipolar Plate Material on Proton Exchange Membrane Fuel Cell Performance," Energies, MDPI, vol. 15(5), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1886-:d:763731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. khazaee, I. & Sabadbafan, H., 2016. "Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 101(C), pages 252-265.
    2. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
    3. Li, Yubai & Zhou, Zhifu & Liu, Xianglei & Wu, Wei-Tao, 2019. "Modeling of PEM fuel cell with thin MEA under low humidity operating condition," Applied Energy, Elsevier, vol. 242(C), pages 1513-1527.
    4. Oluwatosin Ijaodola & Emmanuel Ogungbemi & Fawwad Nisar. Khatib & Tabbi Wilberforce & Mohamad Ramadan & Zaki El Hassan & James Thompson & Abdul Ghani Olabi, 2018. "Evaluating the Effect of Metal Bipolar Plate Coating on the Performance of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 11(11), pages 1-28, November.
    5. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    6. Carton, J.G. & Olabi, A.G., 2017. "Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates," Energy, Elsevier, vol. 136(C), pages 185-195.
    7. Ijaodola, O.S. & El- Hassan, Zaki & Ogungbemi, E. & Khatib, F.N. & Wilberforce, Tabbi & Thompson, James & Olabi, A.G., 2019. "Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 179(C), pages 246-267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ijaodola, O.S. & El- Hassan, Zaki & Ogungbemi, E. & Khatib, F.N. & Wilberforce, Tabbi & Thompson, James & Olabi, A.G., 2019. "Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 179(C), pages 246-267.
    2. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    3. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    4. Abed Alaswad & Abdelnasir Omran & Jose Ricardo Sodre & Tabbi Wilberforce & Gianmichelle Pignatelli & Michele Dassisti & Ahmad Baroutaji & Abdul Ghani Olabi, 2020. "Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells," Energies, MDPI, vol. 14(1), pages 1-21, December.
    5. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    6. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    7. Yang, Wonseok & Cha, Dowon & Kim, Yongchan, 2019. "Effects of flow direction on dynamic response and stability of nonhumidification PEM fuel cell," Energy, Elsevier, vol. 185(C), pages 386-395.
    8. Ercelik, Mustafa & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2023. "Efficient X-ray CT-based numerical computations of structural and mass transport properties of nickel foam-based GDLs for PEFCs," Energy, Elsevier, vol. 262(PB).
    9. Abdul Ghani Olabi & Enas Taha Sayed, 2023. "Developments in Hydrogen Fuel Cells," Energies, MDPI, vol. 16(5), pages 1-5, March.
    10. Zhao, Jian & Li, Xianguo & Shum, Chris & McPhee, John, 2023. "Control-oriented computational fuel cell dynamics modeling – Model order reduction vs. computational speed," Energy, Elsevier, vol. 266(C).
    11. Sankar, K. & Thakre, Niraj & Singh, Sumit Mohan & Jana, Amiya K., 2017. "Sliding mode observer based nonlinear control of a PEMFC integrated with a methanol reformer," Energy, Elsevier, vol. 139(C), pages 1126-1143.
    12. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    13. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
    14. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    15. Pourrahmani, Hossein & Van herle, Jan, 2022. "Water management of the proton exchange membrane fuel cells: Optimizing the effect of microstructural properties on the gas diffusion layer liquid removal," Energy, Elsevier, vol. 256(C).
    16. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    17. Kermani, M.J. & Moein-Jahromi, M. & Hasheminasab, M.R. & Ebrahimi, F. & Wei, L. & Guo, J. & Jiang, F.M., 2022. "Application of a foam-based functionally graded porous material flow-distributor to PEM fuel cells," Energy, Elsevier, vol. 254(PB).
    18. Fathy, Ahmed & Rezk, Hegazy, 2018. "Multi-verse optimizer for identifying the optimal parameters of PEMFC model," Energy, Elsevier, vol. 143(C), pages 634-644.
    19. Feng, ShengSen & Huang, WenTao & Huang, Zhe & Jian, Qifei, 2022. "Optimization of maximum power density output for proton exchange membrane fuel cell based on a data-driven surrogate model," Applied Energy, Elsevier, vol. 317(C).
    20. Suárez, Christian & Iranzo, Alfredo & Toharias, Baltasar & Rosa, Felipe, 2022. "Experimental and numerical Investigation on the design of a bioinspired PEM fuel cell," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1886-:d:763731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.