IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1840-d762467.html
   My bibliography  Save this article

A Molten-Salt Pyrolysis Synthesis Strategy toward Sulfur-Functionalized Carbon for Elemental Mercury Removal from Coal-Combustion Flue Gas

Author

Listed:
  • Jianping Yang

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

  • Hong Xu

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

  • Fanyue Meng

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

  • Qingjie Guo

    (State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China)

  • Tao He

    (Shandong Shiheng Thermal Power Co., Ltd., Taian 271600, China)

  • Zequn Yang

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

  • Wenqi Qu

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

  • Hailong Li

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

Abstract

The emission of mercury from coal combustion has caused consequential hazards to the ecosystem. The key challenge to abating the mercury emission is to explore highly efficient adsorbents. Herein, sulfur-functionalized carbon (S-C) was synthesized by using a molten-salt pyrolysis strategy and employed for the removal of elemental mercury from coal-combustion flue gas. An ideal pore structure, which was favorable for the internal diffusion of the Hg 0 molecule in carbon, was obtained by using a SiO 2 hard template and adjusting the HF etching time. The as-prepared S-C with an HF etching time of 10 h possessed a saturation Hg 0 adsorption capacity of 89.90 mg·g −1 , far exceeding that of the commercial sulfur-loaded activated carbons (S/C). The S-C can be applied at a wide temperature range of 25–125 °C, far exceeding that of commercial S/C. The influence of flue gas components, such as SO 2 , NO, and H 2 O, on the Hg 0 adsorption performance of S-C was insignificant, indicating a good applicability in real-world applications. The mechanism of the Hg 0 removal by S-C was proposed, i.e., the reduced components, including sulfur thiophene, sulfoxide, and C-S, displayed a high affinity toward Hg 0 , which could guarantee the stable immobilization of Hg 0 as HgS in the adsorbent. Thus, the molten-salt pyrolysis strategy has a broad prospect in the application of one-pot carbonization and functionalization sulfur-containing organic precursors as efficient adsorbents for Hg 0 .

Suggested Citation

  • Jianping Yang & Hong Xu & Fanyue Meng & Qingjie Guo & Tao He & Zequn Yang & Wenqi Qu & Hailong Li, 2022. "A Molten-Salt Pyrolysis Synthesis Strategy toward Sulfur-Functionalized Carbon for Elemental Mercury Removal from Coal-Combustion Flue Gas," Energies, MDPI, vol. 15(5), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1840-:d:762467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Marczak-Grzesik & Stanisław Budzyń & Barbara Tora & Szymon Szufa & Krzysztof Kogut & Piotr Burmistrz, 2021. "Low-Cost Organic Adsorbents for Elemental Mercury Removal from Lignite Flue Gas," Energies, MDPI, vol. 14(8), pages 1-15, April.
    2. Li Zhao & Yang-wen Wu & Jian Han & Han-xiao Wang & Ding-jia Liu & Qiang Lu & Yong-ping Yang, 2018. "Density Functional Theory Study on Mechanism of Mercury Removal by CeO 2 Modified Activated Carbon," Energies, MDPI, vol. 11(11), pages 1-13, October.
    3. Ming Li & Hai’en Yang & Hongjun Lu & Tianjiang Wu & Desheng Zhou & Yafei Liu, 2018. "Investigation into the Classification of Tight Sandstone Reservoirs via Imbibition Characteristics," Energies, MDPI, vol. 11(10), pages 1-13, October.
    4. Nuria Fernández-Miranda & Elena Rodríguez & Maria Antonia Lopez-Anton & Roberto García & Maria Rosa Martínez-Tarazona, 2017. "A New Approach for Retaining Mercury in Energy Generation Processes: Regenerable Carbonaceous Sorbents," Energies, MDPI, vol. 10(9), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleg Kucher & Taras Hutsol & Szymon Glowacki & Iryna Andreitseva & Anatolii Dibrova & Andrii Muzychenko & Anna Szeląg-Sikora & Agnieszka Szparaga & Sławomir Kocira, 2022. "Energy Potential of Biogas Production in Ukraine," Energies, MDPI, vol. 15(5), pages 1-22, February.
    2. Antuña-Nieto, C. & Rodríguez, E. & Lopez-Anton, M.A. & García, R. & Martínez-Tarazona, M.R., 2018. "A candidate material for mercury control in energy production processes: Carbon foams loaded with gold," Energy, Elsevier, vol. 159(C), pages 630-637.
    3. Edyta Wrzesińska-Jędrusiak & Michał Czarnecki & Paweł Kazimierski & Paulina Bandrów & Szymon Szufa, 2023. "The Circular Economy in the Management of Waste from Leather Processing," Energies, MDPI, vol. 16(1), pages 1-16, January.
    4. Jerzy Gorecki & Mariusz Macherzynski & Jacek Chmielowiec & Karel Borovec & Mateusz Wałeka & Yinyou Deng & Janusz Sarbinowski & Grzegorz Pasciak, 2022. "The Methods and Stands for Testing Fixed Sorbent and Sorbent Polymer Composite Materials for the Removal of Mercury from Flue Gases," Energies, MDPI, vol. 15(23), pages 1-18, November.
    5. Dmytro Zhuravel & Kyrylo Samoichuk & Serhii Petrychenko & Andrii Bondar & Taras Hutsol & Maciej Kuboń & Marcin Niemiec & Lyudmyla Mykhailova & Zofia Gródek-Szostak & Dmytro Sorokin, 2022. "Modeling of Diesel Engine Fuel Systems Reliability When Operating on Biofuels," Energies, MDPI, vol. 15(5), pages 1-16, February.
    6. Qiang Lyu & Chang’an Wang & Xuan Liu & Defu Che, 2022. "Numerical Study on the Homogeneous Reactions of Mercury in a 600 MW Coal-Fired Utility Boiler," Energies, MDPI, vol. 15(2), pages 1-16, January.
    7. Trobajo, J.R. & Antuña-Nieto, C. & Rodríguez, E. & García, R. & López-Antón, M.A. & Martínez-Tarazona, M.R., 2018. "Carbon-based sorbents impregnated with iron oxides for removing mercury in energy generation processes," Energy, Elsevier, vol. 159(C), pages 648-655.
    8. Zdzislawa Romanowska-Duda & Szymon Szufa & Mieczysław Grzesik & Krzysztof Piotrowski & Regina Janas, 2021. "The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow ( Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Bio," Energies, MDPI, vol. 14(17), pages 1-21, August.
    9. Li Zhao & Yang-wen Wu & Jian Han & Han-xiao Wang & Ding-jia Liu & Qiang Lu & Yong-ping Yang, 2018. "Density Functional Theory Study on Mechanism of Mercury Removal by CeO 2 Modified Activated Carbon," Energies, MDPI, vol. 11(11), pages 1-13, October.
    10. Szufa, S. & Piersa, P. & Junga, R. & Błaszczuk, A. & Modliński, N. & Sobek, S. & Marczak-Grzesik, M. & Adrian, Ł. & Dzikuć, M., 2023. "Numerical modeling of the co-firing process of an in situ steam-torrefied biomass with coal in a 230 MW industrial-scale boiler," Energy, Elsevier, vol. 263(PE).
    11. Piotr Piersa & Szymon Szufa & Justyna Czerwińska & Hilal Ünyay & Łukasz Adrian & Grzegorz Wielgosinski & Andrzej Obraniak & Wiktoria Lewandowska & Marta Marczak-Grzesik & Maria Dzikuć & Zdzislawa Roma, 2021. "Pine Wood and Sewage Sludge Torrefaction Process for Production Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers," Energies, MDPI, vol. 14(23), pages 1-27, December.
    12. Jie Jiang & Yongfa Diao, 2022. "The Effects of Physical-Chemical Evolution of High-Sulfur Petroleum Coke on Hg 0 Removal from Coal-Fired Flue Gas and Exploration of Its Micro-Scale Mechanism," IJERPH, MDPI, vol. 19(12), pages 1-29, June.
    13. Yinjiao Su & Xuan Liu & Yang Teng & Kai Zhang, 2021. "A Preliminary Study on Dependence of Mercury Distribution on the Degree of Coalification in Ningwu Coalfield, Shanxi, China," Energies, MDPI, vol. 14(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1840-:d:762467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.