IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3119-d563000.html
   My bibliography  Save this article

A Preliminary Study on Dependence of Mercury Distribution on the Degree of Coalification in Ningwu Coalfield, Shanxi, China

Author

Listed:
  • Yinjiao Su

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Xuan Liu

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Yang Teng

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Kai Zhang

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China
    Key Laboratory of Power Station Energy Transfer Conversion and System (North China Electric Power University), Ministry of Education, Beijing 102206, China)

Abstract

Mercury (Hg) is a toxic trace element emitted from coal conversion and utilization. Samples with different coal ranks and gangue from Ningwu Coalfield are selected and investigated in this study. For understanding dependence of mercury distribution characteristics on coalification degree, Pearson regression analysis coupled with Spearman rank correlation is employed to explore the relationship between mercury and sulfur, mercury and ash in coal, and sequential chemical extraction method is adopted to recognize the Hg speciation in the samples of coal and gangue. The measured results show that Hg is positively related to total sulfur content in coal and the affinity of Hg to different sulfur forms varies with the coalification degree. Organic sulfur has the biggest impact on Hg in peat, which becomes weak with increasing the coalification degree from lignite to bituminous coal. Sulfate sulfur is only related to Hg in peat or lignite as little content in coal. However, the Pearson linear correlation coefficients of Hg and pyritic sulfur are relatively high with 0.479 for lignite, 0.709 for sub-bituminous coal and 0.887 for bituminous coal. Hg is also related to ash content in coal, whose Pearson linear correlation coefficients are 0.504, 0.774 and 0.827 respectively, in lignite, sub-bituminous coal and bituminous coal. Furthermore, Hg distribution is directly depended on own speciation in coal. The total proportion of F2 + F3 + F4 is increased from 41.5% in peat to 87.4% in bituminous coal, but the average proportion of F5 is decreased from 56.8% in peat to 12.4% in bituminous coal. The above findings imply that both Hg and sulfur enrich in coal largely due to the migration from organic state to inorganic state with the increase of coalification degree in Ningwu Coalfield.

Suggested Citation

  • Yinjiao Su & Xuan Liu & Yang Teng & Kai Zhang, 2021. "A Preliminary Study on Dependence of Mercury Distribution on the Degree of Coalification in Ningwu Coalfield, Shanxi, China," Energies, MDPI, vol. 14(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3119-:d:563000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaohang Li & Yang Teng & Kai Zhang & Hao Peng & Fangqin Cheng & Kunio Yoshikawa, 2020. "Mercury Migration Behavior from Flue Gas to Fly Ashes in a Commercial Coal-Fired CFB Power Plant," Energies, MDPI, vol. 13(5), pages 1-15, February.
    2. Yinjiao Su & Xuan Liu & Yang Teng & Kai Zhang, 2021. "Mercury Speciation in Various Coals Based on Sequential Chemical Extraction and Thermal Analysis Methods," Energies, MDPI, vol. 14(9), pages 1-20, April.
    3. Li Zhao & Yang-wen Wu & Jian Han & Han-xiao Wang & Ding-jia Liu & Qiang Lu & Yong-ping Yang, 2018. "Density Functional Theory Study on Mechanism of Mercury Removal by CeO 2 Modified Activated Carbon," Energies, MDPI, vol. 11(11), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinjiao Su & Xuan Liu & Yang Teng & Kai Zhang, 2021. "Mercury Speciation in Various Coals Based on Sequential Chemical Extraction and Thermal Analysis Methods," Energies, MDPI, vol. 14(9), pages 1-20, April.
    2. Xuan Liu & Yang Teng & Kai Zhang, 2022. "Migration Behaviors of As, Se and Pb in Ultra-Low-Emission Coal-Fired Units and Effect of Co-Firing Sewage Sludge in CFB Boilers," Energies, MDPI, vol. 15(4), pages 1-19, February.
    3. Jianping Yang & Hong Xu & Fanyue Meng & Qingjie Guo & Tao He & Zequn Yang & Wenqi Qu & Hailong Li, 2022. "A Molten-Salt Pyrolysis Synthesis Strategy toward Sulfur-Functionalized Carbon for Elemental Mercury Removal from Coal-Combustion Flue Gas," Energies, MDPI, vol. 15(5), pages 1-15, March.
    4. Tadeusz Dziok, 2023. "Production of Low-Mercury Solid Fuel by Mild Pyrolysis Process," Energies, MDPI, vol. 16(7), pages 1-12, March.
    5. Qiang Lyu & Chang’an Wang & Xuan Liu & Defu Che, 2022. "Numerical Study on the Homogeneous Reactions of Mercury in a 600 MW Coal-Fired Utility Boiler," Energies, MDPI, vol. 15(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3119-:d:563000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.