IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1466-d751301.html
   My bibliography  Save this article

Error Compensation Enhanced Day-Ahead Electricity Price Forecasting

Author

Listed:
  • Dimitrios Kontogiannis

    (Department of Electrical and Computer Engineering, School of Engineering, University of Thessaly, 38334 Volos, Greece)

  • Dimitrios Bargiotas

    (Department of Electrical and Computer Engineering, School of Engineering, University of Thessaly, 38334 Volos, Greece)

  • Aspassia Daskalopulu

    (Department of Electrical and Computer Engineering, School of Engineering, University of Thessaly, 38334 Volos, Greece)

  • Athanasios Ioannis Arvanitidis

    (Department of Electrical and Computer Engineering, School of Engineering, University of Thessaly, 38334 Volos, Greece)

  • Lefteri H. Tsoukalas

    (Center for Intelligent Energy Systems (CiENS), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906, USA)

Abstract

The evolution of electricity markets has led to increasingly complex energy trading dynamics and the integration of renewable energy sources as well as the influence of several external market factors contributed towards price volatility. Therefore, day-ahead electricity price forecasting models, typically using some kind of neural network, play a crucial role in the optimal behavior of market agents. The most prominent models and benchmarks rely on improving the accuracy of predictions and the time for convergence by some sort of a priori processing of the dataset that is used for the training of the neural network, such as hyperparameter tuning and feature selection techniques. What has been overlooked so far is the possible benefit of a posteriori processing, which would consider the effects of parameters that could refine the predictions once they have been made. Such a parameter is the estimation of the residual training error. In this study, we investigate the effect of residual training error estimation for the day-ahead price forecasting task and propose an error compensation deep neural network model (ERC–DNN) that focuses on the minimization of prediction error, while reinforcing error stability through the integration of an autoregression module. The experiments on the Nord Pool power market indicated that this approach yields improved error metrics when compared to the baseline deep learning structure in different training scenarios, and the refined predictions for each hourly sequence shared a more stable error profile. The proposed method contributes towards the development of more flexible hybrid neural network models and the potential integration of the error estimation module in future benchmarks, given a small and interpretable set of hyperparameters.

Suggested Citation

  • Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Athanasios Ioannis Arvanitidis & Lefteri H. Tsoukalas, 2022. "Error Compensation Enhanced Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 15(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1466-:d:751301
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1466/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1466/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alireza Pourdaryaei & Mohammad Mohammadi & Mazaher Karimi & Hazlie Mokhlis & Hazlee A. Illias & Seyed Hamidreza Aghay Kaboli & Shameem Ahmad, 2021. "Recent Development in Electricity Price Forecasting Based on Computational Intelligence Techniques in Deregulated Power Market," Energies, MDPI, vol. 14(19), pages 1-28, September.
    2. Chang, Zihan & Zhang, Yang & Chen, Wenbo, 2019. "Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform," Energy, Elsevier, vol. 187(C).
    3. Jorge Barrientos Mar n & Fernando Villada, 2020. "Regionalized Discount Rate to Evaluate Renewable Energy Projects in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 332-336.
    4. Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafal Weron, 2021. "Erratum to 'Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark' [Appl. Energy 293 (2021) 116983]," WORking papers in Management Science (WORMS) WORMS/21/12, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    5. Viviana Fanelli & Maren Diane Schmeck, 2019. "On the seasonality in the implied volatility of electricity options," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1321-1337, August.
    6. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    7. Grzegorz Marcjasz & Jesus Lago & Rafa{l} Weron, 2020. "Neural networks in day-ahead electricity price forecasting: Single vs. multiple outputs," Papers 2008.08006, arXiv.org.
    8. Grzegorz Marcjasz, 2020. "Forecasting Electricity Prices Using Deep Neural Networks: A Robust Hyper-Parameter Selection Scheme," Energies, MDPI, vol. 13(18), pages 1-18, September.
    9. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    10. Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
    11. Cai Tao & Junjie Lu & Jianxun Lang & Xiaosheng Peng & Kai Cheng & Shanxu Duan, 2021. "Short-Term Forecasting of Photovoltaic Power Generation Based on Feature Selection and Bias Compensation–LSTM Network," Energies, MDPI, vol. 14(11), pages 1-16, May.
    12. Katarzyna Maciejowska & Weronika Nitka & Tomasz Weron, 2019. "Day-Ahead vs. Intraday—Forecasting the Price Spread to Maximize Economic Benefits," Energies, MDPI, vol. 12(4), pages 1-15, February.
    13. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2020. "Minutely Active Power Forecasting Models Using Neural Networks," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    14. Marin Cerjan & Marin Matijaš & Marko Delimar, 2014. "Dynamic Hybrid Model for Short-Term Electricity Price Forecasting," Energies, MDPI, vol. 7(5), pages 1-15, May.
    15. Moting Su & Zongyi Zhang & Ye Zhu & Donglan Zha, 2019. "Data-Driven Natural Gas Spot Price Forecasting with Least Squares Regression Boosting Algorithm," Energies, MDPI, vol. 12(6), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
    2. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
    3. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    4. Arkadiusz Jędrzejewski & Grzegorz Marcjasz & Rafał Weron, 2021. "Importance of the Long-Term Seasonal Component in Day-Ahead Electricity Price Forecasting Revisited: Parameter-Rich Models Estimated via the LASSO," Energies, MDPI, vol. 14(11), pages 1-17, June.
    5. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    6. Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    7. Tomasz Zema & Adam Sulich, 2022. "Models of Electricity Price Forecasting: Bibliometric Research," Energies, MDPI, vol. 15(15), pages 1-18, August.
    8. Bartosz Uniejewski, 2023. "Electricity price forecasting with Smoothing Quantile Regression Averaging: Quantifying economic benefits of probabilistic forecasts," Papers 2302.00411, arXiv.org, revised Jan 2024.
    9. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
    10. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    11. Stefano Frizzo Stefenon & Laio Oriel Seman & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2023. "Aggregating Prophet and Seasonal Trend Decomposition for Time Series Forecasting of Italian Electricity Spot Prices," Energies, MDPI, vol. 16(3), pages 1-18, January.
    12. Joanna Janczura & Andrzej Puć, 2023. "ARX-GARCH Probabilistic Price Forecasts for Diversification of Trade in Electricity Markets—Variance Stabilizing Transformation and Financial Risk-Minimizing Portfolio Allocation," Energies, MDPI, vol. 16(2), pages 1-28, January.
    13. Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.
    14. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    15. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    16. Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
    17. Grzegorz Dudek, 2022. "A Comprehensive Study of Random Forest for Short-Term Load Forecasting," Energies, MDPI, vol. 15(20), pages 1-19, October.
    18. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    19. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    20. Krishna Prakash N. & Jai Govind Singh, 2023. "Electricity price forecasting using hybrid deep learned networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1750-1771, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1466-:d:751301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.