IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p698-d727799.html
   My bibliography  Save this article

Development of a Low-Depth Modular GHX through a Real-Scale Experiment

Author

Listed:
  • Kwonye Kim

    (Department of Architectural Engineering, Pusan National University, 2 Busandaehak-ro 63, Geomjeong-gu, Busan 46241, Korea)

  • Sangmu Bae

    (Department of Architectural Engineering, Pusan National University, 2 Busandaehak-ro 63, Geomjeong-gu, Busan 46241, Korea)

  • Yujin Nam

    (Department of Architectural Engineering, Pusan National University, 2 Busandaehak-ro 63, Geomjeong-gu, Busan 46241, Korea)

  • Euyjoon Lee

    (Energy Efficiency Research Division, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea)

  • Evgueniy Entchev

    (Natural Resources Canada (NRCan), CanmetENERGY, 1 Haanel Drive, Ottawa, ON K1A 1M1, Canada)

Abstract

The global energy sector is aiming to rapidly transform energy systems into those less dependent on fossil fuels to reduce their harmful effects on the climate. Although ground source heat pump (GSHP) systems are more efficient than conventional air-source heat pump (ASHP) systems, the high initial investment cost, particularly for a vertical closed-loop type ground heat exchanger (GHX), makes it difficult to incorporate them into small buildings. This paper proposes a low-depth modular GHX for reducing cost and improving the workability of GSHPs. A modular GHX is a cubical structure comprising tubes and buried using an excavator at a depth 4 m below the ground surface. This GHX is manufactured at a factory, carried by a small truck, and then installed by a small lift or a backhoe such that it can be installed in small buildings or narrow spaces at low depths underground. In this research, the performance and feasibility analyses of modular and vertical GHXs were conducted via a real-scale experiment. The results demonstrate that the modular GHX influences the workability of GSHPs by 91% during the heating period and 70% during the cooling period. In contrast to the conventional HVAC, the modular and vertical GHXs could recover the initial investment costs in 4 years and 10 years, respectively.

Suggested Citation

  • Kwonye Kim & Sangmu Bae & Yujin Nam & Euyjoon Lee & Evgueniy Entchev, 2022. "Development of a Low-Depth Modular GHX through a Real-Scale Experiment," Energies, MDPI, vol. 15(3), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:698-:d:727799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adel Eswiasi & Phalguni Mukhopadhyaya, 2021. "Performance of Conventional and Innovative Single U-Tube Pipe Configuration in Vertical Ground Heat Exchanger (VGHE)," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    2. Cristina Piselli & Alessio Guastaveglia & Jessica Romanelli & Franco Cotana & Anna Laura Pisello, 2020. "Facility Energy Management Application of HBIM for Historical Low-Carbon Communities: Design, Modelling and Operation Control of Geothermal Energy Retrofit in a Real Italian Case Study," Energies, MDPI, vol. 13(23), pages 1-18, December.
    3. Shangyuan Chen & Jinfeng Mao & Xu Han & Chaofeng Li & Liyao Liu, 2016. "Numerical Analysis of the Factors Influencing a Vertical U-Tube Ground Heat Exchanger," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    4. Hongkyo Kim & Yujin Nam & Sangmu Bae & Jae Sang Choi & Sang Bum Kim, 2020. "A Study on the Effect of Performance Factor on GSHP System through Real-Scale Experiments in Korea," Energies, MDPI, vol. 13(3), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Yu Jin & Entchev, Evgeuniy & Na, Sun Ik & Kang, Eun Chul & Baik, Young-Jin & Lee, Euy Joon, 2023. "Investigation of system optimization and control logic on a solar geothermal hybrid heat pump system based on integral effect test data," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Vicidomini & Diana D’Agostino, 2022. "Geothermal Source Exploitation for Energy Saving and Environmental Energy Production," Energies, MDPI, vol. 15(17), pages 1-5, September.
    2. Basma Souayeh & Suvanjan Bhattacharyya & Najib Hdhiri & Mir Waqas Alam, 2021. "Heat and Fluid Flow Analysis and ANN-Based Prediction of A Novel Spring Corrugated Tape," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    3. Changlong Wang & Qiang Fu & Han Fang & Jinli Lu, 2022. "Estimation of Ground Thermal Properties of Shallow Coaxial Borehole Heat Exchanger Using an Improved Parameter Estimation Method," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    4. Daehoon Kim & Seokhoon Oh, 2018. "Optimizing the Design of a Vertical Ground Heat Exchanger: Measurement of the Thermal Properties of Bentonite-Based Grout and Numerical Analysis," Sustainability, MDPI, vol. 10(8), pages 1-15, July.
    5. Hyeongjin Moon & Jae-Young Jeon & Yujin Nam, 2020. "Development of Optimal Design Method for Ground-Source Heat-Pump System Using Particle Swarm Optimization," Energies, MDPI, vol. 13(18), pages 1-17, September.
    6. Peng Li & Hsien-Te Lin, 2018. "Study on Application Potential of Seasonal Thermal Energy Storage-Hybrid Ground Source Heat Pump in Taiwan—Taking Experiments in Tainan as Examples," Sustainability, MDPI, vol. 10(6), pages 1-16, May.
    7. Kwonye Kim & Jaemin Kim & Yujin Nam & Euyjoon Lee & Eunchul Kang & Evgueniy Entchev, 2021. "Analysis of Heat Exchange Rate for Low-Depth Modular Ground Heat Exchanger through Real-Scale Experiment," Energies, MDPI, vol. 14(7), pages 1-13, March.
    8. Luisa Dias Pereira & Vanessa Tavares & Nelson Soares, 2021. "Up-To-Date Challenges for the Conservation, Rehabilitation and Energy Retrofitting of Higher Education Cultural Heritage Buildings," Sustainability, MDPI, vol. 13(4), pages 1-11, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:698-:d:727799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.