IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1028-d738344.html
   My bibliography  Save this article

Proposal of Wireless Charging Which Enables Magnetic Field Suppression at Foreign Object Location

Author

Listed:
  • Shunta Sato

    (Graduate School of Science and Engineering, Hosei University, Tokyo 184-8584, Japan)

  • Sousuke Nakamura

    (Faculty of Science and Engineering, Hosei University, Tokyo 184-8584, Japan)

Abstract

In the wireless power transmission (WPT) to electric vehicles (EVs) in parking lots, there is a risk of abnormal heat generation due to the absorption of the magnetic field in metallic foreign objects. Accordingly, currently available products are equipped with a function that automatically halts power transmission when a metallic foreign object is detected. However, if possible, continuing power transmission while suppressing the magnetic field absorption may be an another solution. Therefore, this paper proposes a novel function which enables wireless power transmission with high efficiency while suppressing the magnetic field absorption of metallic foreign objects. In this study, it was assumed that a metallic foreign body was present in an arbitrary point in a two-dimensional plane and the power transmission was conducted by the phased array WPT. An algorithm using particle swarm optimization (PSO) to search for the optimal combination of the phase and amplitude of the coil input voltages together with coil arrangements, in terms of both magnetic field suppression and transmission efficiency, is proposed. The simulation was performed with the lower efficiency boundary set as 85% and the load power set as 11 kW, in reference to the SAE J2954 standard. As a result, it was confirmed that the magnetic field suppression effect increased in accordance with the increase in the number of transmission (Tx) coils, thus indicating the effectiveness of the proposed algorithm.

Suggested Citation

  • Shunta Sato & Sousuke Nakamura, 2022. "Proposal of Wireless Charging Which Enables Magnetic Field Suppression at Foreign Object Location," Energies, MDPI, vol. 15(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1028-:d:738344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1028/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1028/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khairy Sayed & Abdulaziz Almutairi & Naif Albagami & Omar Alrumayh & Ahmed G. Abo-Khalil & Hedra Saleeb, 2022. "A Review of DC-AC Converters for Electric Vehicle Applications," Energies, MDPI, vol. 15(3), pages 1-32, February.
    2. Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
    3. Alberto Broatch & Pablo Olmeda & Xandra Margot & Luca Agizza, 2025. "A Physical-Based Electro-Thermal Model for a Prismatic LFP Lithium-Ion Cell Thermal Analysis," Energies, MDPI, vol. 18(5), pages 1-29, March.
    4. Jerzy Ryszard Szymanski & Marta Zurek-Mortka & Daniel Wojciechowski & Nikolai Poliakov, 2020. "Unidirectional DC/DC Converter with Voltage Inverter for Fast Charging of Electric Vehicle Batteries," Energies, MDPI, vol. 13(18), pages 1-17, September.
    5. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    6. Heba-Allah I. ElAzab & R. A. Swief & Hanady H. Issa & Noha H. El-Amary & Alsnosy Balbaa & H. K. Temraz, 2018. "FPGA Eco Unit Commitment Based Gravitational Search Algorithm Integrating Plug-in Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-17, September.
    7. Milad Akbari & Morris Brenna & Michela Longo, 2018. "Optimal Locating of Electric Vehicle Charging Stations by Application of Genetic Algorithm," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    8. Phillip K. Agbesi & Rico Ruffino & Marko Hakovirta, 2024. "Creating an optimal electric vehicle ecosystem: an investigation of electric vehicle stakeholders and ecosystem trends in the US," SN Business & Economics, Springer, vol. 4(3), pages 1-36, March.
    9. Chengfei Geng & Fengyou He & Jingwei Zhang & Hongsheng Hu, 2017. "Partial Stray Inductance Modeling and Measuring of Asymmetrical Parallel Branches on the Bus-Bar of Electric Vehicles," Energies, MDPI, vol. 10(10), pages 1-16, October.
    10. Jaber Abu Qahouq & Yuan Cao, 2018. "Control Scheme and Power Electronics Architecture for a Wirelessly Distributed and Enabled Battery Energy Storage System," Energies, MDPI, vol. 11(7), pages 1-20, July.
    11. Hossain, M.S. & Fang, Yan Ru & Ma, Teng & Huang, Chen & Peng, Wei & Urpelainen, Johannes & Hebbale, Chetan & Dai, Hancheng, 2023. "Narrowing fossil fuel consumption in the Indian road transport sector towards reaching carbon neutrality," Energy Policy, Elsevier, vol. 172(C).
    12. Kang Miao Tan & Vigna K. Ramachandaramurthy & Jia Ying Yong & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg, 2017. "Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling," Energies, MDPI, vol. 10(11), pages 1-21, November.
    13. Azmeh, Shamel & Nguyen, Huong & Kuhn, Marlene, 2022. "Automation and industrialisation through global value chains: North Africa in the German automotive wiring harness industry," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 125-138.
    14. Yuqing Yao & Chunhua Liu & Christopher H.T. Lee, 2018. "Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, August.
    15. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    16. Isabel C. Gil-García & Mª Socorro García-Cascales & Habib Dagher & Angel Molina-García, 2021. "Electric Vehicle and Renewable Energy Sources: Motor Fusion in the Energy Transition from a Multi-Indicator Perspective," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    17. Yanyan Liu & Ying Cheng & Wei Liu, 2018. "Understanding Gatekeeping Transformation in the Chinese EV Industry: An Exploratory Study of the Focal Firms' Cross-industrial Interactions," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 16(3-B), pages 485-503.
    18. Yao Yi & Z.Y. Sun & Bi-An Fu & Wen-Yu Tong & Rui-Song Huang, 2025. "Accelerating Towards Sustainability: Policy and Technology Dynamic Assessments in China’s Road Transport Sector," Sustainability, MDPI, vol. 17(8), pages 1-38, April.
    19. Changqing Du & Shiyang Huang & Yuyao Jiang & Dongmei Wu & Yang Li, 2022. "Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 15(12), pages 1-25, June.
    20. Lihe Xi & Xin Zhang & Chuanyang Sun & Zexing Wang & Xiaosen Hou & Jibao Zhang, 2017. "Intelligent Energy Management Control for Extended Range Electric Vehicles Based on Dynamic Programming and Neural Network," Energies, MDPI, vol. 10(11), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1028-:d:738344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.