IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9564-d1005784.html
   My bibliography  Save this article

Bidirectional Power Control for a Three-Phase Grid-Connected Inverter under Unbalanced Grid Conditions Using a Proportional-Resonant and a Modified Time-Domain Symmetrical Components Extraction Method

Author

Listed:
  • Mohammad Alathamneh

    (Electrical and Computer Engineering Department, Auburn University, Auburn, AL 36849, USA)

  • Haneen Ghanayem

    (Electrical and Computer Engineering Department, Auburn University, Auburn, AL 36849, USA)

  • R. M. Nelms

    (Electrical and Computer Engineering Department, Auburn University, Auburn, AL 36849, USA)

Abstract

Discussed in this study is a bidirectional power control technique for a three-phase grid connected inverter under different unbalanced grid conditions. Prior researchers have focused on either solving the unbalanced problem or controlling the power. However, this paper addresses both issues: solving the unbalanced problems of the point-of-common-coupling (PCC) voltages and grid currents, and reducing the large ripple in the real and reactive power while also applying a bidirectional power control under weak grid conditions. A phase-locked loop (PLL) is not required because a simpler PR controller was employed. A symmetrical components extraction method was used. Compared to previous symmetrical component techniques that used complicated transformations, this approach requires less computations. Since the unbalanced load issue has been resolved, other loads connected to the grid will not be impacted. MATLAB Simulink was used in simulation experiments, and a real-time interface platform dSPACE DS1202 was used to verify the proposed control method efficacy experimentally.

Suggested Citation

  • Mohammad Alathamneh & Haneen Ghanayem & R. M. Nelms, 2022. "Bidirectional Power Control for a Three-Phase Grid-Connected Inverter under Unbalanced Grid Conditions Using a Proportional-Resonant and a Modified Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9564-:d:1005784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Alharbi & Semih Isik & Abdulaziz Alkuhayli & Subhashish Bhattacharya, 2022. "Power Ripple Control Method for Modular Multilevel Converter under Grid Imbalances," Energies, MDPI, vol. 15(10), pages 1-18, May.
    2. Xiaotao Chen & Weimin Wu & Ning Gao & Jiahao Liu & Henry Shu-Hung Chung & Frede Blaabjerg, 2019. "Finite Control Set Model Predictive Control for an LCL-Filtered Grid-Tied Inverter with Full Status Estimations under Unbalanced Grid Voltage," Energies, MDPI, vol. 12(14), pages 1-22, July.
    3. Songda Wang & Danyang Bao & Gustavo Gontijo & Sanjay Chaudhary & Remus Teodorescu, 2021. "Modeling and Mitigation Control of the Submodule-Capacitor Voltage Ripple of a Modular Multilevel Converter under Unbalanced Grid Conditions," Energies, MDPI, vol. 14(3), pages 1-17, January.
    4. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(19), pages 1-16, September.
    5. Wenjie Ma & Sen Ouyang & Weidong Xu, 2019. "Improved Frequency Locked Loop Based Synchronization Method for Three-Phase Grid-Connected Inverter under Unbalanced and Distorted Grid Conditions," Energies, MDPI, vol. 12(6), pages 1-18, March.
    6. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Proportional-Resonant Control Method," Energies, MDPI, vol. 15(19), pages 1-17, September.
    7. Foad Najafi & Mohsen Hamzeh & Matthias Fripp, 2018. "Unbalanced Current Sharing Control in Islanded Low Voltage Microgrids," Energies, MDPI, vol. 11(10), pages 1-22, October.
    8. Akito Nakadomari & Ryuto Shigenobu & Takeyoshi Kato & Narayanan Krishnan & Ashraf Mohamed Hemeida & Hiroshi Takahashi & Tomonobu Senjyu, 2021. "Unbalanced Voltage Compensation with Optimal Voltage Controlled Regulators and Load Ratio Control Transformer," Energies, MDPI, vol. 14(11), pages 1-18, May.
    9. Jae-Myeong Kim & Geum-Seop Song & Jae-Jung Jung, 2021. "Zero-Sequence Voltage Injection Method for DC Capacitor Voltage Balancing of Wye-Connected CHB Converter under Unbalanced Grid and Load Conditions," Energies, MDPI, vol. 14(4), pages 1-18, February.
    10. Emad M. Ahmed & Mokhtar Aly & Ahmed Elmelegi & Abdullah G. Alharbi & Ziad M. Ali, 2019. "Multifunctional Distributed MPPT Controller for 3P4W Grid-Connected PV Systems in Distribution Network with Unbalanced Loads," Energies, MDPI, vol. 12(24), pages 1-19, December.
    11. Kuang-Hsiung Tan & Faa-Jeng Lin & Jun-Hao Chen, 2017. "A Three-Phase Four-Leg Inverter-Based Active Power Filter for Unbalanced Current Compensation Using a Petri Probabilistic Fuzzy Neural Network," Energies, MDPI, vol. 10(12), pages 1-21, December.
    12. Hyun Shin & Sang Heon Chae & Eel-Hwan Kim, 2021. "Unbalanced Current Reduction Method of Microgrid Based on Power Conversion System Operation," Energies, MDPI, vol. 14(13), pages 1-16, June.
    13. Nabil Mohammed & Mihai Ciobotaru & Graham Town, 2019. "Online Parametric Estimation of Grid Impedance Under Unbalanced Grid Conditions," Energies, MDPI, vol. 12(24), pages 1-21, December.
    14. Saad F. Al-Gahtani & R. M. Nelms, 2021. "Performance of a Shunt Active Power Filter for Unbalanced Conditions Using Only Current Measurements," Energies, MDPI, vol. 14(2), pages 1-20, January.
    15. Yunjun Yu & Zhongyang Wang & Xiaofeng Wan, 2019. "Optimal Current Balance Control of Three-Level Inverter under Grid Voltage Unbalance: An Adaptive Dynamic Programming Approach," Energies, MDPI, vol. 12(15), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingyu Yang & Huanyi Zhou & Mohammad Alathamneh & R. M. Nelms, 2023. "An Evolutionary Annealing–Simplex Method for Inductance Value Selection for LCL Filters," Energies, MDPI, vol. 16(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(19), pages 1-16, September.
    2. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Proportional-Resonant Control Method," Energies, MDPI, vol. 15(19), pages 1-17, September.
    3. Xingyu Yang & Huanyi Zhou & Mohammad Alathamneh & R. M. Nelms, 2023. "An Evolutionary Annealing–Simplex Method for Inductance Value Selection for LCL Filters," Energies, MDPI, vol. 16(10), pages 1-16, May.
    4. Ariel Villalón & Carlos Muñoz & Javier Muñoz & Marco Rivera, 2023. "Fixed-Switching-Frequency Modulated Model Predictive Control for Islanded AC Microgrid Applications," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    5. Silvia Costa Ferreira & João Gabriel Luppi Foster & Robson Bauwelz Gonzatti & Rondineli Rodrigues Pereira & Guilherme Gonçalves Pinheiro & Bruno P. Braga Guimarães, 2023. "Online Adaptive Parameter Estimation of a Finite Control Set Model Predictive Controlled Hybrid Active Power Filter," Energies, MDPI, vol. 16(9), pages 1-22, April.
    6. Davide del Giudice & Federico Bizzarri & Samuele Grillo & Daniele Linaro & Angelo Maurizio Brambilla, 2022. "Impact of Passive-Components’ Models on the Stability Assessment of Inverter-Dominated Power Grids," Energies, MDPI, vol. 15(17), pages 1-23, August.
    7. Jahangeer Badar Soomro & Dileep Kumar & Faheem Akhtar Chachar & Semih Isik & Mohammed Alharbi, 2023. "An Enhanced AC Fault Ride through Scheme for Offshore Wind-Based MMC-HVDC System," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    8. Krzysztof Kołek & Andrzej Firlit, 2021. "A New Optimal Current Controller for a Three-Phase Shunt Active Power Filter Based on Karush–Kuhn–Tucker Conditions," Energies, MDPI, vol. 14(19), pages 1-17, October.
    9. Rezk, Hegazy & Aly, Mokhtar & Fathy, Ahmed, 2021. "A novel strategy based on recent equilibrium optimizer to enhance the performance of PEM fuel cell system through optimized fuzzy logic MPPT," Energy, Elsevier, vol. 234(C).
    10. Xiaosheng Wang & Ke Dai & Xinwen Chen & Xin Zhang & Qi Wu & Ziwei Dai, 2019. "Reactive Power Compensation and Imbalance Suppression by Star-Connected Buck-Type D-CAP," Energies, MDPI, vol. 12(10), pages 1-16, May.
    11. Jahangeer Badar Soomro & Faheem Akhtar Chachar & Madad Ali Shah & Abdul Aziz Memon & Faisal Alsaif & Sager Alsulamy, 2023. "Optimized Circulating Current Control and Enhanced AC Fault Ride-through Capability Using Model Predictive Control for MMC-HVDC Applications," Energies, MDPI, vol. 16(13), pages 1-19, July.
    12. Luis Guasch-Pesquer & Sara García-Ríos & Adolfo Andres Jaramillo-Matta & Enric Vidal-Idiarte, 2022. "Improved Method for Determining Voltage Unbalance Factor Using Induction Motors," Energies, MDPI, vol. 15(23), pages 1-13, December.
    13. Rui Qin & Chunhua Yang & Hongwei Tao & Tao Peng & Chao Yang & Zhiwen Chen, 2019. "A Power Loss Decrease Method Based on Finite Set Model Predictive Control for a Motor Emulator with Reduced Switch Count," Energies, MDPI, vol. 12(24), pages 1-25, December.
    14. Taufik Taluo & Leposava Ristić & Milutin Jovanović, 2021. "Dynamic Modeling and Control of BDFRG under Unbalanced Grid Conditions," Energies, MDPI, vol. 14(14), pages 1-22, July.
    15. Amit Kumer Podder & Md. Habibullah & Md. Tariquzzaman & Eklas Hossain & Sanjeevikumar Padmanaban, 2020. "Power Loss Analysis of Solar Photovoltaic Integrated Model Predictive Control Based On-Grid Inverter," Energies, MDPI, vol. 13(18), pages 1-26, September.
    16. Gabriel Nicolae Popa & Angela Iagăr & Corina Maria Diniș, 2020. "Considerations on Current and Voltage Unbalance of Nonlinear Loads in Residential and Educational Sectors," Energies, MDPI, vol. 14(1), pages 1-29, December.
    17. He Wang & Tao Wu & Youguang Guo & Gang Lei & Xinmei Wang, 2023. "Predictive Current Control of Sensorless Linear Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 16(2), pages 1-14, January.
    18. Ali A. Radwan & Ahmed A. Zaki Diab & Abo-Hashima M. Elsayed & Hassan Haes Alhelou & Pierluigi Siano, 2020. "Active Distribution Network Modeling for Enhancing Sustainable Power System Performance; a Case Study in Egypt," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    19. Emad M. Ahmed & Mokhtar Aly & Manar Mostafa & Hegazy Rezk & Hammad Alnuman & Waleed Alhosaini, 2022. "An Accurate Model for Bifacial Photovoltaic Panels," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    20. Jiang Zeng & Lin Yang & Yuchang Ling & Haoping Chen & Zhonglong Huang & Tao Yu & Bo Yang, 2018. "Smoothly Transitive Fixed Frequency Hysteresis Current Control Based on Optimal Voltage Space Vector," Energies, MDPI, vol. 11(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9564-:d:1005784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.