IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6381-d650575.html
   My bibliography  Save this article

A New Optimal Current Controller for a Three-Phase Shunt Active Power Filter Based on Karush–Kuhn–Tucker Conditions

Author

Listed:
  • Krzysztof Kołek

    (Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH—University of Science and Technology, 30-059 Krakow, Poland)

  • Andrzej Firlit

    (Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH—University of Science and Technology, 30-059 Krakow, Poland)

Abstract

This paper presents an algorithm for finding the optimal control for a current controller that operates as a part of a control system of a shunt active power filter. The algorithm is based upon the Karush–Kuhn–Tucker conditions for finding an optimal value where control signal is limited and constraints create a cube. The explicit solution of the Karush–Kuhn–Tucker problem is presented and simplified calculations are given to lower calculation complexity. The presented Karush–Kuhn–Tucker algorithm is compared with a classical PI controller. It is given the algorithm for finding the optimal parameters of the PI controller and the behavior of the PI controller is compared with the presented algorithm. Attention has been paid to the saturation of controllers in commutation states of load currents, which has a negative impact on the final performance of the controllers and the controlled shunt active power filter. The paper also presents the software and hardware platforms applied to run the presented algorithms in real-time. For both controllers, the shunt active power filter response is shown using real experimental results. The results of the experiments prove better behavior regarding the presented algorithm, especially in the case of commutative load currents, where the output signals from other controllers become saturated.

Suggested Citation

  • Krzysztof Kołek & Andrzej Firlit, 2021. "A New Optimal Current Controller for a Three-Phase Shunt Active Power Filter Based on Karush–Kuhn–Tucker Conditions," Energies, MDPI, vol. 14(19), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6381-:d:650575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klemen Deželak & Peter Bracinik & Klemen Sredenšek & Sebastijan Seme, 2021. "Proportional-Integral Controllers Performance of a Grid-Connected Solar PV System with Particle Swarm Optimization and Ziegler–Nichols Tuning Method," Energies, MDPI, vol. 14(9), pages 1-15, April.
    2. Yahya Danayiyen & Kyungsuk Lee & Minho Choi & Young Il Lee, 2019. "Model Predictive Control of Uninterruptible Power Supply with Robust Disturbance Observer," Energies, MDPI, vol. 12(15), pages 1-22, July.
    3. Agata Bielecka & Daniel Wojciechowski, 2021. "Stability Analysis of Shunt Active Power Filter with Predictive Closed-Loop Control of Supply Current," Energies, MDPI, vol. 14(8), pages 1-17, April.
    4. Kuang-Hsiung Tan & Faa-Jeng Lin & Jun-Hao Chen, 2017. "A Three-Phase Four-Leg Inverter-Based Active Power Filter for Unbalanced Current Compensation Using a Petri Probabilistic Fuzzy Neural Network," Energies, MDPI, vol. 10(12), pages 1-21, December.
    5. Diana Lopez-Caiza & Freddy Flores-Bahamonde & Samir Kouro & Victor Santana & Nicolás Müller & Andrii Chub, 2019. "Sliding Mode Based Control of Dual Boost Inverter for Grid Connection," Energies, MDPI, vol. 12(22), pages 1-15, November.
    6. Triet Nguyen-Van & Rikiya Abe & Kenji Tanaka, 2018. "Digital Adaptive Hysteresis Current Control for Multi-Functional Inverters," Energies, MDPI, vol. 11(9), pages 1-13, September.
    7. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    2. Nicholas D. de Andrade & Ruben B. Godoy & Edson A. Batista & Moacyr A. G. de Brito & Rafael L. R. Soares, 2022. "Embedded FPGA Controllers for Current Compensation Based on Modern Power Theories," Energies, MDPI, vol. 15(17), pages 1-17, August.
    3. P. Abirami & C. N. Ravi, 2022. "Enhancing grid stability by maintaining power quality in distribution network using FOPID and ANN controlled shunt active filter," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7551-7578, June.
    4. Jaime A. Rohten & Javier E. Muñoz & Esteban S. Pulido & José J. Silva & Felipe A. Villarroel & José R. Espinoza, 2021. "Very Low Sampling Frequency Model Predictive Control for Power Converters in the Medium and High-Power Range Applications," Energies, MDPI, vol. 14(1), pages 1-18, January.
    5. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.
    6. Kyunghwan Choi & Dong Soo Kim & Seok-Kyoon Kim, 2020. "Disturbance Observer-Based Offset-Free Global Tracking Control for Input-Constrained LTI Systems with DC/DC Buck Converter Applications," Energies, MDPI, vol. 13(16), pages 1-18, August.
    7. Jose Miguel Espi & Jaime Castello, 2019. "A Novel Fast MPPT Strategy for High Efficiency PV Battery Chargers," Energies, MDPI, vol. 12(6), pages 1-16, March.
    8. Minh Ly Duc & Petr Bilik & Radek Martinek, 2023. "Harmonics Signal Feature Extraction Techniques: A Review," Mathematics, MDPI, vol. 11(8), pages 1-36, April.
    9. Triet Nguyen-Van, 2021. "A Power Control Method for Hybrid Electrical Accommodation Systems," Energies, MDPI, vol. 14(20), pages 1-12, October.
    10. Miloud Rezkallah & Hussein Ibrahim & Félix Dubuisson & Ambrish Chandra & Sanjeev Singh & Bhim Singh & Mohamad Issa, 2021. "Hardware Implementation of Composite Control Strategy for Wind-PV-Battery Hybrid Off-Grid Power Generation System," Clean Technol., MDPI, vol. 3(4), pages 1-23, November.
    11. Kamran Zeb & Muhammad Saqib Nazir & Iftikhar Ahmad & Waqar Uddin & Hee-Je Kim, 2021. "Control of Transformerless Inverter-Based Two-Stage Grid-Connected Photovoltaic System Using Adaptive-PI and Adaptive Sliding Mode Controllers," Energies, MDPI, vol. 14(9), pages 1-15, April.
    12. Oktay Karakaya & Murat Erhan Balci & Mehmet Hakan Hocaoglu, 2023. "Minimization of Voltage Harmonic Distortion of Synchronous Generators under Non-Linear Loading via Modulated Field Current," Energies, MDPI, vol. 16(4), pages 1-17, February.
    13. Łukasz Michalec & Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Łukasz Jasiński & Vishnu Suresh, 2021. "Impact of Harmonic Currents of Nonlinear Loads on Power Quality of a Low Voltage Network–Review and Case Study," Energies, MDPI, vol. 14(12), pages 1-19, June.
    14. Xiaosheng Wang & Ke Dai & Xinwen Chen & Xin Zhang & Qi Wu & Ziwei Dai, 2019. "Reactive Power Compensation and Imbalance Suppression by Star-Connected Buck-Type D-CAP," Energies, MDPI, vol. 12(10), pages 1-16, May.
    15. Raquel Martinez & Pablo Castro & Alberto Arroyo & Mario Manana & Noemi Galan & Fidel Simon Moreno & Sergio Bustamante & Alberto Laso, 2022. "Techniques to Locate the Origin of Power Quality Disturbances in a Power System: A Review," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
    16. Mohammad Alathamneh & Haneen Ghanayem & R. M. Nelms, 2022. "Bidirectional Power Control for a Three-Phase Grid-Connected Inverter under Unbalanced Grid Conditions Using a Proportional-Resonant and a Modified Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(24), pages 1-23, December.
    17. Julio Barros, 2022. "New Power Quality Measurement Techniques and Indices in DC and AC Networks," Energies, MDPI, vol. 15(23), pages 1-3, December.
    18. Mohamed Maher & Shady H. E. Abdel Aleem & Ahmed M. Ibrahim & Adel El-Shahat, 2022. "Novel Mathematical Design of Triple-Tuned Filters for Harmonics Distortion Mitigation," Energies, MDPI, vol. 16(1), pages 1-22, December.
    19. Jiang Zeng & Lin Yang & Yuchang Ling & Haoping Chen & Zhonglong Huang & Tao Yu & Bo Yang, 2018. "Smoothly Transitive Fixed Frequency Hysteresis Current Control Based on Optimal Voltage Space Vector," Energies, MDPI, vol. 11(7), pages 1-20, July.
    20. Rui Hou & Pengfei Wang & Jian Wu & Dianguo Xu, 2022. "Research on Oscillation Suppression Methods in Shunt Active Power Filter System," Energies, MDPI, vol. 15(9), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6381-:d:650575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.