IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9528-d1004730.html
   My bibliography  Save this article

Unsteady Study on the Influence of the Angle of Attack of the Blade on the Stall of the Impeller of the Double-Suction Centrifugal Pump

Author

Listed:
  • Hao Wang

    (School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Yibin Li

    (School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
    Innovation Research Center for Advanced Equipment of Nuclear Class Pumps, Lanzhou University of Technology, Lanzhou 730050, China)

  • Yunshan Kong

    (School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Shengfu Zhang

    (School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Teng Niu

    (School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

Abstract

In order to clearly show the influence on the rotating stall of the impeller of a double-suction centrifugal pump, this paper, using the numerical simulation method of Shear Stress Transform (SST), analyzes the effects of different inlet angles of the blade on hydraulic performance, internal flow field and pressure pulsation in the impeller. The results show that the small angle of attack of the blade inlet scheme can effectively suppress the impeller rotation stall and that the design point head and efficiency are increased by 6.4% and 5.7% respectively. This paper, using turbulence intensity to determine the generation of rotating stall, proposed that the average of turbulence intensity exceeding 2% is a necessary condition for the generation of rotating stall and discovered that the standard deviation of the big angle of attack of the scheme is always greater than that of the small angle being analyzed by the impeller pressure pulsation. The basic critical frequencies of blade inlet pressure pulsation with components of a low frequency is dominated by the impeller rotating frequency F 0 and its harmonic frequencies 2F 0 , and 3F 0 , but the basic critical frequencies of blade outlet pressure pulsation is governed by Blade Passing Frequency (BPF). The research results can provide some theoretical support for stall research and hydraulic performance optimization of a double-suction pump.

Suggested Citation

  • Hao Wang & Yibin Li & Yunshan Kong & Shengfu Zhang & Teng Niu, 2022. "Unsteady Study on the Influence of the Angle of Attack of the Blade on the Stall of the Impeller of the Double-Suction Centrifugal Pump," Energies, MDPI, vol. 15(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9528-:d:1004730
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jiahua & Wang, Haoyuan & Yan, Qingdong & Khoo, Boo Cheong & Liu, Cheng & Guo, Meng & Wei, Wei, 2024. "Effect of blade length on unsteady cavitation characteristics of hydrodynamic torque converter," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    2. Fernández Oro, J.M. & Barrio Perotti, R. & Galdo Vega, M. & González, J., 2023. "Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions," Energy, Elsevier, vol. 278(PA).
    3. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    4. Chengshuo Wu & Jun Yang & Shuai Yang & Peng Wu & Bin Huang & Dazhuan Wu, 2023. "A Review of Fluid-Induced Excitations in Centrifugal Pumps," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    5. Sonawat, Arihant & Kim, Sung & Ma, Sang-Bum & Kim, Seung-Jun & Lee, Ju Beak & Yu, Myo Suk & Kim, Jin-Hyuk, 2022. "Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump," Energy, Elsevier, vol. 252(C).
    6. Ni, Dan & Zhang, Ning & Gao, Bo & Li, Zhong & Yang, Minguan, 2020. "Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump," Energy, Elsevier, vol. 198(C).
    7. Gu, Yandong & Wang, Dongcheng & Wang, Qiliang & Ding, Peng & Ji, Qingfeng & Cheng, Li, 2024. "Experimental investigation of the impact of blade number on energy performance and pressure fluctuation in a high-speed coolant pump for electric vehicles," Energy, Elsevier, vol. 313(C).
    8. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    9. Li, Xiaojun & Chen, Hui & Chen, Bo & Luo, Xianwu & Yang, Baofeng & Zhu, Zuchao, 2020. "Investigation of flow pattern and hydraulic performance of a centrifugal pump impeller through the PIV method," Renewable Energy, Elsevier, vol. 162(C), pages 561-574.
    10. Haoqing Jiang & Wei Dong & Peixuan Li & Haichen Zhang, 2023. "Based on Wavelet and Windowed Multi-Resolution Dynamic Mode Decomposition, Transient Axial Force Analysis of a Centrifugal Pump under Variable Operating Conditions," Energies, MDPI, vol. 16(20), pages 1-25, October.
    11. Zhang, Ning & Jiang, Junxian & Gao, Bo & Liu, Xiaokai, 2020. "DDES analysis of unsteady flow evolution and pressure pulsation at off-design condition of a centrifugal pump," Renewable Energy, Elsevier, vol. 153(C), pages 193-204.
    12. Faye Jin & Zhifeng Yao & Duanming Li & Ruofu Xiao & Fujun Wang & Chenglian He, 2019. "Experimental Investigation of Transient Characteristics of a Double Suction Centrifugal Pump System during Starting Period," Energies, MDPI, vol. 12(21), pages 1-28, October.
    13. Hyunjun Jang & Junho Suh, 2024. "Flow Characteristic Analysis of the Impeller Inlet Diameter in a Double-Suction Pump," Energies, MDPI, vol. 17(9), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9528-:d:1004730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.